Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bioniker entwickeln TBT-freie Beschichtung gegen organischen Bewuchs und innoWi findet Partner für Vermarktung

16.04.2008
Giftfreie Beschichtung schützt auch Schiffsrümpfe gegen Seepocke, Miesmuschel & Co.

Erfolg für Bremer Hochschul-Team und für innoWi: Bioniker entwickeln TBT-freie Beschichtung gegen organischen Bewuchs und innoWi findet Partner für Vermarktung

Die Römer verwendeten Bleiplatten, später setzte man Kupferplatten ein, und seit dem 20. Jahrhundert werden Schiffsrümpfe und Unterwasserkörper wie Plattformen mit giftigen Anstrichen gegen den Bewuchs von Algen und Meerestieren geschützt. Die Schiffslacke enthalten zumeist das hochtoxische Tributylzinn (TBT), dessen Einsatz nun weltweit verboten ist.

Eine sehr wirksame und vor allem ungiftige Alternative zu der umweltschädlichen Chemikalie kommt nun aus dem Bionik-Forschungslabor der Hochschule Bremen: Prof. Dr. Antonia Kesel und ihr Team setzen auf einen mechanischen Schutz - nach dem Vorbild der Hai-Haut. Problemlos mit dem Pinsel lässt sich die Beschichtung auftragen. Vorgestellt wird sie nun auf der Hannover Messe vom 21. bis 25. April (Halle 2, Stand D46).

... mehr zu:
»Dentikel »Seepocke

Bei ihrem Weg auf den Markt wird die neue Entwicklung von der innoWi GmbH betreut. Im vergangenen Jahr wurde die Innovation zum Patent angemeldet, und mit der Vosschemie GmbH in Uetersen bei Hamburg hat das Gemeinschaftsunternehmen der Bremer Hochschulen und der Bremer Investitions-Gesellschaft mbH (BIG) auch schon einen Lizenznehmer gefunden. Alsbald soll das neue Produkt auf den Markt kommen. Schon jetzt zeichne sich ab, dass es ein Erfolg werde, sagt Diplombiologin und Innovationsmanagerin Birgit Funk von der innoWi GmbH. "Chemiekonzerne, Hersteller von Lacken, Farben, Folien oder Oberflächenbeschichtungen suchen hier schon lange nach Lösungen. Unsere Untersuchungen zeigen, dass der Bedarf an einer die Umwelt schonenden Antifouling-Beschichtung riesengroß ist. Zudem lässt sie sich so einfach auftragen wie ein normaler Lack."

"Fouling" oder "Biofouling" heißt die unerwünschte Anlagerung von Seepocke, Miesmuschel & Co, die besonders in der Seefahrt große Probleme bereitet. Durch sie werden die Schiffe schwerer, der Strömungswiderstand nimmt zu, und damit steigt der Treibstoffverbrauch erheblich. Der bisher wirksamste und gängigste Zusatz in Antifouling-Anstrichen ist das Schwermetall TBT. Durch die Nahrungskette kann es in den menschlichen oder tierischen Organismus gelangen und dort zu hormonellen Störungen führen - bis hin zur Unfruchtbarkeit. Das zeigt sich besonders in Meeresgebieten mit hohem Schifffahrtsaufkommen. Durch das TBT sind dort inzwischen einige Arten vom Aussterben bedroht. Daher hat die Internationale Seeschifffahrts-Organisation (IMO) 2003 ein erstes Verbot für TBT-haltige Antifouling-Farben ausgesprochen, seit 2008 gilt ein vollständiges Gebrauchsverbot, und auch die Reste dieser giftigen Anstriche müssen nun beseitigt werden. Auch die ersatzweise eingeführten, ebenfalls giftigen Kupfer- und Kupferoxidverbindungen als zusätzlicher Wirkstoff in Unterwasseranstrichen gegen den Bewuchs sind bereits für einige Binnengewässer in verboten.

Die Lösung lag am Strand: Nur ein kleiner Katzenhai war nicht befallen

Während eines Kurzurlaubes in der Bretagne kam die Idee, bei einem kleinen Strandspaziergang: Zwischen Plastikflaschen und sonstigem Müll entdeckte Prof. Dr. Antonia Kesel einen kleinen, verendeten Katzenhai, und die Bremer Biologin fragte sich, warum alles Strandgut außer dem Hai von Seepocken überwuchert war. Selbst an sehr glatten Oberflächen haften die kleinen Krebse bombenfest und können auch durch massive mechanische Belastung nicht gelöst werden. Zurück in Bremen ging die Biologin dem Phänomen nach. Von der Bio-Station Helgoland besorgte sie sich einen kleinen Katzenhai, der dort tot geborgen worden war, und begann, dessen Haut zu untersuchen: Was ist das Besondere daran? Warum wird sie, anders als zum Beispiel die Haut von Walen, nicht durch Parasiten befallen?

"Schon durch die Lupe kann man es sehen", sagt Antonia Kesel. "Wo andere Fische Schuppen haben, hat der Hai auf seiner Haut kleine Zähnchen - aus Dentin, dem härtesten Material, das bei Lebewesen vorkommt", beschreibt sie ihre Beobachtungen. Mit einer Art Stiel seien diese ungefähr einen halben Millimeter großen, so genannten Dentikel jeweils einzeln und flexibel in der Unterhaut des Hais eingelagert. Die einzelnen Zähnchen seien gegeneinander beweglich und bildeten so einen elastischen Schutzschild. Seit mehr als 200 Millionen Jahren schütze sich der Überlebenskünstler auf diese Weise, sagt Kesel.

Wegen der "Einzelaufhängung" der Dentikel sei die Oberfläche sehr elastisch. Eine weitere Besonderheit: "Die Oberfläche der Dentikel ist nicht glatt, sondern sie haben jeweils mehrere kleine, in Strömungsrichtung verlaufende Rillen", erklärt Kesel. So können sich zum Beispiel zwar kurzfristig kleine Seepockenlarven anhaften, aber sobald sie größer werden, verlieren sie den Halt. Zum einen wegen der Rillen, und zum anderen wegen der Flexibilität des Untergrundes. Seepocken erreichen einen Durchmesser von bis zu 1,5 Zentimetern. Spätestens wenn sie über die Größe eines Dentikels hinaus wachsen, fallen sie ab.

Mechanischer Schutz statt chemischer Keule

Die wichtigsten Merkmale des natürlichen Vorbildes sind die regelmäßige, lamellenartige Mikrostrukturierung, die niedrige Oberflächenenergie und die hohe Elastizität. Ziel der Bionikerin war es, diesen mechanischen Schutzschild mit modernen, ungiftigen Werkstoffen nachzubilden und die Eigenschaften zu übertragen. Es galt, geeignete Materialien und ein praktikables Herstellungsverfahren zu finden sowie die Produktionszeit und -kosten möglichst gering zu halten. "Die wesentliche Frage war: Wie weit kann ich diese komplexe Struktur vereinfachen und dabei noch die ihre Wirkung erhalten? Bei aller Reduzierung musste das Prinzip noch greifen", berichtet die Wissenschaftlerin. Die Kunst lag im Abstrahieren.

Während der mehrjährigen Entwicklungsphase arbeiteten Kesel und ihr Team unter anderem mit Werkstoffwissenschaftlern, Physikern, Maschinenbauern und Strömungsmechanikern zusammen. Mit "bestimmten Silikonmaterialien", so ihre Forschungen, konnte eine Oberflächenstruktur nach dem Vorbild der Haihaut hergestellt werden, und es folgten zahlreiche Studien des Siedlungsverhaltens der Seepocke an einer künstlichen Haut. Unter Realbedingungen wurde sie auf Testpanels an Schiffsrümpfen erprobt, zunächst in der Nordsee, dann auch im Mittelmeer. Das Ergebnis: Die Beschichtung auf den Testplatten reduzierte den Bewuchs um 70 Prozent.

Die Antifouling-Wirksamkeit beruht alleine auf den physikalischen Eigenschaften des Materials. "Sie amortisiert sich schnell, da Wiederholungsanstriche seltener nötig sind", sagt Kesel, und im Vergleich zu anderen nicht-toxischen Beschichtungen wie zum Beispiel Teflon weise sie eine längere Beständigkeit auf. Die innoWi ist von dem Erfolg des neuen Produktes überzeugt: Es sei ungiftig, sehr leicht zu handhaben und dabei auch wirtschaftlich, sagt Birgit Funk. "Auf die chemische Keule können wir verzichten. Es geht auch ohne Schwermetallablagerungen in den Sedimenten der Meere durch giftige Schiffsanstriche", freut sich die Biologin.

Von Bierbrauer bis Papierhersteller - auch für nicht-maritime Anwendungen interessant

An Schiffsrümpfen, Plattformen und Bojen bereitet der organische Bewuchs große Probleme und auch an Sensorsystemen für Forschungs- oder Überwachungszwecke im maritimen Bereich. Oft sind sie nach kurzer Zeit so bewachsen, dass sie ausgetauscht werden müssen. Seit langem sucht man hier nach wirksamen, die Umwelt schonenden Antifouling-Strategien. Aber auch für Anwendungen auf dem Festland ist die neue Entwicklung interessant. So sind zum Beispiel auch Rohrzuleitungen von Wärmetauschern und industriellen Kühlsystemen, die aus Seen und Flüssen mit Wasser gespeist werden, vom Fouling betroffen. Unerwünschte Bio-Filme bilden sich auch in den Rohrleitungssystemen in der Papier verarbeitenden Industrie oder in der Lebensmitteltechnologie. Hier kämpfen unter anderem Molkereien und Brauereien mit organischen Anhaftungen. Die Reinigungsprozesse sind nicht nur aufwändig, sondern bedürfen auch toxischer Substanzen und einer anschließenden Neutralisierung der Leitungen. Die neue Beschichtung würde zu erheblichen Erleichterungen führen und den Einsatz schädlicher Chemikalien reduzieren.

Vosschemie

Die Vosschemie GmbH hat ihren Hauptsitz in Uetersen bei Hamburg und beschäftigt 180 Mitarbeiterinnen und Mitarbeiter. Über ihre Niederlassungen und knapp 60 Partner vermarktet sie weltweit rund 1.500 Produkte. Dabei agiert das Unternehmen einerseits als Handelspartner für Industrie, Handwerk und Fachhandel, andererseits hat es sich als Hersteller moderner Werkstoffe auf dem Gebiet der kalthärtenden Kunststoffe einen Namen gemacht. Vosschemie gilt eigenen Angaben zufolge als führender Hersteller hochwertigster Polyester-Spachtelmassen. 2001 vereinte Vosschemie das Produkt-Sortiment für die Bootsreparatur und -Instandhaltung unter dem Markennamen Yachtcare. Zur Ergänzung des eigenen Sortiments arbeitet das Unternehmen auch hier mit internationalen Herstellern zusammen. Mit der Entwicklung aus dem Bremer Forschungslabor will das Unternehmen nun sein Angebot bereichern: Die Lizenzverträge wurden in diesen Tagen unterschrieben. Die Produktion beginnt in diesem Jahr, ebenso wie der weltweite Vertrieb.

(Text: Sabine Nollmann)

Weitere Informationen:

Dipl.-Biol. Birgit Funk (innoWi GmbH)
Telefon: 0421 96 00-714, E-Mail: birgit.funk@innowi.de
Prof. Dr. Antonia B. Kesel (Hochschule Bremen, Fachrichtung Bionik)
Telefon: 0421 59 05-25 25, E-Mail: info-bionik@hs-bremen.de
Andreas Woyda (Anwendungstechnik, Vosschemie GmbH)
Telefon: 04122 717-0, E-Mail: a.woyda@vosschemie.de

Ulrich Berlin | idw
Weitere Informationen:
http://www.innowi.de
http://www.bionik.hs-bremen.de
http://www.vosschemie.de

Weitere Berichte zu: Dentikel Seepocke

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 3D-Landkarten der Genaktivität
20.11.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Einblick in die dunkle Materie des Genoms
20.11.2019 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

20.11.2019 | Materialwissenschaften

Eisberge als Nährstoffquelle - Führt der Klimawandel zu mehr Eisendüngung im Ozean?

20.11.2019 | Geowissenschaften

Gehen verändert das Sehen

20.11.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics