Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zukunftsträchtige Zweisamkeit - Molekulare Wurzel moderner Pflanzensymbiosen entdeckt?

04.03.2008
Viele Pflanzen leben mit Pilzen oder Bakterien in mutualistischer Symbiose, also in einer Lebensgemeinschaft zu beiderseitigem Nutzen. Die Pflanzen profitieren, weil ihre mikrobiellen Mitbewohner ihnen verbesserten Zugang zu knappen Nährstoffen wie Stickstoff oder Phosphaten verschaffen.

Die Juniorpartner dagegen beziehen energiereiche Kohlenhydrate aus der Photosynthese der Pflanzen. Eine uralte Form der Symbiose ist die so genannte Arbuskuläre Mykorrhiza, kurz AM, die vermutlich bereits während der Eroberung des terrestrischen Lebensraumes durch Pflanzen entstand.

Ein Forscherteam unter der Leitung von Professor Martin Parniske vom Institut für Genetik der Ludwig-Maximilians-Universität (LMU) München stellt nun in der online frei zugänglichen Fachzeitschrift "Public Library of Science (PLoS) Biology" einen wesentlichen genetischen Schritt während der Evolution von Pflanzensymbiosen mit stickstoff-fixierenden Bakterien vor. Bei dieser Symbiose binden Bakterien in den Wurzelzellen der Pflanze den begehrten Stickstoff aus der Luft - und verschaffen ihrem Wirt damit einen bedeutenden ökologischen Vorteil. In einer weiteren Studie, die zeitgleich in der Zeitschrift "Proceedings of the National Academy of Sciences USA (PNAS)" erscheint, zeigen die Forscher in Zusammenarbeit mit einem französischen Team, dass unterschiedliche Formen der Stickstoff-fixierenden Wurzelsymbiose gemeinsame genetische Elemente aufweisen, also möglicherweise gleichen evolutiven Ursprungs sind. Potentiell könnte sich diese Symbiose in Zukunft auch auf andere Wirte übertragen lassen, etwa Reis und sonstige wichtige Pflanzen der Weltwirtschaft.

In fast allen terrestrischen Ökosystemen mangelt es Pflanzen an Nährstoffen, vor allem an Phosphat und Stickstoff. Symbiosen mit Phosphat sammelnden Pilzen oder Bakterien, die elementaren Luftstickstoff zu Ammonium reduzieren können, schaffen hier Abhilfe - und bieten den Wirtspflanzen einen entscheidenden Konkurrenzvorteil. Die Arbuskuläre Mykorrhiza ist eine weltweit vorkommende Symbiose zwischen höheren Pflanzen und Pilzen aus der Gruppe der Glomeromycota.

Die uralte Assoziationsform ist vermutlich vor über 400 Millionen Jahren entstanden und wird heute von rund 80 Prozent aller Landpflanzen betrieben. In der Symbiose nimmt der Pilz über ein umfangreiches Bodenmyzel aus fadenförmigen Zellen, den Hyphen, gelöste Nährstoffe und Mineralien, insbesondere Phosphate, auf und macht diese der Wirtspflanze zugänglich. "Diese uralte Symbioseform ist für viele Pflanzen von zentraler oder sogar überlebensnotwendiger Bedeutung", sagt Parniske.

Das genetische Programm, das die Arbuskuläre Mykorrhiza ermöglicht, ist nach neueren Erkenntnissen ebenfalls weit verbreitet - und hat sich möglicherweise über die Jahrmillionen nur unwesentlich verändert. Vom evolutionären Standpunkt aus ist interessant, dass der entwicklungsgeschichtlich alten Arbuskulären Mykorrhiza eine Art 'genetische Mutterrolle' für eine weiter, deutlich jüngere Form der Wurzelsymbiose zugeschrieben wird", so Parniske. "Bei dieser so genannten Wurzelknöllchensymbiose leben Bakterien in den Wurzelzellen der Wirtspflanzen, wo sie in speziellen Organen, den Knöllchen, elementaren Stickstoff aus der Luft fixieren. Diese Art des Zusammenlebens kennt man von von Leguminosen wie Bohnen, Erbsen und Soja." Die Leguminosen gehören damit zu der kleinen Gruppe von Pflanzen mit der Fähigkeit, ihre bakteriellen Partner ins Innere der Pflanzenzelle aufzunehmen. Dies wiederum ermöglicht, ähnlich wie bei der ebenfalls intrazellulären Arbuskulären Mykorrhiza, einen besonders engen Kontakt und effizienten Stoffaustausch zwischen Wirt und Gast.

Welche genetischen Veränderungen jedoch die Entstehung dieser besonderen Art der Symbiose ermöglichten, war bislang unklar. Es wird seit längerem vermutet, dass eine Rekrutierung von Genen der Arbuskulären Mykorrhiza einen wesentlichen Schritt darstellt, um deren konserviertes pflanzliches Programm auch für intrazelluläre Symbiosen mit Bakterien nutzbar zu machen. Ein wichtiger Hinweis hierauf ist, dass mehrere Gene einem gemeinsamen genetischen Programm angehören, das AM und die stickstofffixierende Wurzelknöllchensymbiose verbindet. Ein Beispiel dafür ist das so genannte "Symbiose-Rezeptor-Kinase"-Gen, kurz SYMRK. "Wir konnten jetzt zeigen, dass SYMRK in verschiedenen Pflanzenlinien eine strukturelle und funktionelle Diversifizierung aufweist, die unter bekannten Symbiosegenen einmalig ist", berichtet Parniske. "Unsere Befunde legen offen, dass eine Funktionserweiterung von SYMRK einen wichtigen Schritt in der Evolution intrazellulärer Knöllchensymbiosen darstellte." Eine längere Variante von SYMRK könnte einer Rekrutierung von AM-Genen für bakterielle Knöllchensymbiosen zugrunde liegen, weil sie einen entsprechend erweiterten Funktionsumfang besitzt und in allen betroffenen Pflanzengruppen zu finden ist. Dazu gehören die Leguminosen, aber auch die so genannten Aktinorhizapflanzen wie Erle und Sanddorn, die mit Frankia-Bakterien Symbiosen eingehen.

"Insgesamt weisen die Erkenntnisse beider Studien auf einen gemeinsamen evolutionären Ursprung intrazellulärer Wurzelsymbiosen mit stickstofffixierenden Bakterien hin", so Parniske. "Unsere Arbeit bietet jetzt wesentliche Einblicke in die genetische und evolutive Grundlage dieser hochentwickelten Symbiosen. Dabei sind die genetischen Unterschiede zwischen Leguminosen und nicht stickstofffixierenden Pflanzen auch von großem biotechnologischen Interesse. In natürlichen Systemen ist diese Art des Zusammenlebens nämlich auf wenige Wirtsgruppen beschränkt - die dann aber erheblich davon profitieren. Dies ist auch eine ökonomisch sehr wünschenswerte Eigenschaft, da die Produktion von Stickstoffdünger in erheblichem Umfang Energie und damit fossile Brennstoffe verbraucht. Noch sind Untersuchungen nötig, um weitere genetische Besonderheiten knöllchenbildender Pflanzen aufzuklären. Eines Tages könnte es dann möglich sein, die Knöllchensymbiose auch auf andere Pflanzen zu übertragen - etwa Getreide oder andere wichtige Pflanzen der Weltwirtschaft."

Publikationen:
Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. Markmann K, Giczey G, Parniske M,
PLoS Biol 6(3): e68, 4. März 2008
doi:10.1371/journal.pbio.0060068
"SymRK defines a common genetic basis for plant root endosymbioses with AM fungi, rhizobia and Frankia bacteria",
Hassen Gherbi, Katharina Markmann, Sergio Svistoonoff, Joan Estevan, Daphné Autran, Gabor Giczey, Florence Auguy, Benjamin Péret, Laurent Laplaze, Claudine Franche, Martin Parniske, and Didier Bogusz,

PNAS, 4. März 2008

Ansprechpartner:
Professor Dr. Martin Parniske
Department Biologie I der LMU
Tel.: 089 / 2180 - 6150
Fax: 089 / 178 56 33
E-Mail: parniske@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de
http://www.genetik.biologie.uni-muenchen.de/research/parniske

Weitere Berichte zu: Bakterie Gen Leguminose Phosphat SYMRK Stickstoff Symbiose Wirt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics