Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zu kompliziert gedacht?

05.02.2008
Neuronale Aktivität kann weit besser vorhersagbar sein, als bisher angenommen

Wie empfindlich reagieren neuronale Netzwerke auf äußere Störeinflüsse? Wie genau sind Prozesse in Nervenzellnetzwerken und damit vielleicht das Denken im Gehirn vorherbestimmt? Diese Fragen haben Sven Jahnke, Raoul-Martin Memmesheimer und Marc Timme am Bernstein Zentrum für Computational Neuroscience und Max-Planck-Institut für Dynamik und Selbstorganisation mit Hilfe mathematischer Modelle untersucht. Ihr Ergebnis: Unter bestimmten Bedingungen sind neuronale Netzwerke vorhersagbarer als bisher angenommen. (Physical Review Letters, 1. Februar 2008)

Das Gehirn ist wohl die komplexeste Struktur, die die Evolution je hervorgebracht hat: mehr als 100 Milliarden Nervenzellen kommunizieren über ein weit verzweigtes Netzwerk miteinander. Sie verarbeiten Informationen in Form von elektrischen Impulsen. Jede Zelle verrechnet die Signale der ihr vorgeschalteten Zellen. Wann sie selbst einen Impuls sendet, hängt vom Ergebnis dieser Berechnung ab. Ein solches System neuronaler Signalweitergabe haben Timme und seine Kollegen mathematisch analysiert und ihre daraus abgeleitete Theorie anhand von Computersimulationen überprüft. Wie im Gehirn folgt auch im mathematischen Modell die Dynamik neuronaler Signalweitergabe keiner erkennbaren Ordnung - in scheinbar unvorhersehbarer Weise senden die Nervenzellen Impulse. Aber wie unvorhersehbar ist ein solches System wirklich?

"Chaotisch" nennen Wissenschaftler ein System, in dem geringfügige Unterschiede in den Anfangsbedingungen zu völlig verschiedenen Entwicklung führen können. Das Verhalten chaotischer Systeme lässt sich nicht langfristig vorhersagen. "Der Flügelschlag eines Schmetterlings im Amazonas-Urwald kann einen Orkan in Europa auslösen", so veranschaulichte in den 1960ern der Mathematiker und Meteorologe Edward N. Lorenz diesen Effekt. Im Jahre 1996 zeigten Wissenschaftler an der Hebrew University in Israel in einer theoretischen Studie, dass die im Gehirn beobachtete irreguläre neuronale Aktivität ebenfalls durch ein solches chaotisches Verhalten begründet werden kann. Das Netzwerk würde demnach eine ganz andere Dynamik entwickeln, wenn auch nur ein einzelnes Neuron einen Bruchteil einer Sekunde früher oder später ein Signal aussendet. In den letzten zehn Jahren nahmen nun viele Neurowissenschaftler an, dass solch chaotisches Verhalten grundsätzlich auf der beobachteten Irregularität basiert.

... mehr zu:
»Nervenzelle

Dass dies aber nur unter bestimmten Umständen gilt und längst nicht immer der Fall sein muss, haben Timme und seine Kollegen nun herausgefunden. "Eine Kombination verschiedener neuer Methoden hat es uns ermöglicht, jeden einzelnen Impuls eines Neurons im Netzwerk zu berücksichtigen", so Jahnke. Die Wissenschaftler konnten zeigen, dass ein neuronales Netzwerk unter bestimmten Bedingungen gegenüber kleinen zeitlichen Verschiebungen neuronaler Impulse erstaunlich unempfindlich ist. "Genügend ähnliche Muster neuronaler Aktivität entwickeln keine gänzlich unterschiedliche Dynamik, wie man das von einem chaotischen System erwarten würde, im Gegenteil, sie gleichen sich sogar langfristig aneinander an", sagt Memmesheimer. Im Gehirn könnte dies dazu beitragen, dass bestimmte Aktivitätsmuster hochgradig präzise in der Zeit auftreten, dass also Information in solchen Netzwerken zeitlich exakt verarbeitet wird, Berechnungen genau ausgeführt werden.

Obwohl das Netzwerk unter statistischen Gesichtspunkten sehr irregulär erscheint, muss es sich dabei nicht um ein chaotisches System handeln, es kann vielmehr auch über längere Zeiträume vorhersagbar sein. "Unter welchen Bedingungen das Gehirn nun chaotisch reagiert und wann es ein vorhersagbares Verhalten zeigt, muss noch genauer untersucht werden", so Timme. In jedem Falle ist die Dynamik neuronaler Netzwerke, auch wenn sie hochgradig irregulär ist, nicht immer so kompliziert wie lange gedacht.

Originalveröffentlichung:
Sven Jahnke, Raoul-Martin Memeshimer und Marc Timme (2007). Stable irregular dynamics in complex neural networks. Physical Review Letters 100, 048102. DOI: 10.113/PhysRevLett.100.048102
Kontakt:
Dr. Marc Timme
Head of the Network Dynamics Group
Max Planck Institut für Dynamik und Selbstorganisation
Bernstein Zentrum für Computational Neuroscience
Bunsenstr. 10
37073 Göttingen
timme@nld.ds.mpg.de
Die Bernstein Zentren für Computational Neuroscience in Berlin, Freiburg, Göttingen und München werden vom Bundesministerium für Bildung und Forschung (BMBF) gefördert. Um die komplexe Struktur des Gehirns zu erforschen, verbindet die Computational Neuroscience Experiment, Computersimulation und Theoriebildung.

Katrin Weigmann | idw
Weitere Informationen:
http://www.nld.ds.mpg.de/~timme
http://www.bernstein-zentren.de
http://www.bccn-goettingen.de

Weitere Berichte zu: Nervenzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemie aus der Luft: atmosphärischem Stickstoff als Alternative
22.10.2018 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

nachricht Bakterien verhindern die Bekämpfung einer Virusinfektion
22.10.2018 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Gravitationswellen die Dunkle Materie ausleuchten

Schwarze Löcher stossen zusammen, Gravitationswellen breiten sich durch die Raumzeit aus - und ein riesiges Messgerät ermöglicht es, die Struktur des Universums zu erkunden. Dies könnte bald Realität werden, wenn die Raumantenne LISA ihren Betrieb aufnimmt. UZH-Forschende zeigen nun, dass LISA auch Aufschluss über die schwer fassbaren Partikel der Dunklen Materie geben könnte.

Dank der Laserinterferometer-Raumantenne (LISA) können Astrophysiker Gravitationswellen beobachten, die von Schwarzen Löchern ausgesendet werden. Diese...

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Lehren und Lernen mit digitalen Medien im Fokus

22.10.2018 | Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemie aus der Luft: atmosphärischem Stickstoff als Alternative

22.10.2018 | Biowissenschaften Chemie

Gebirge bereiten Boden für Artenreichtum

22.10.2018 | Geowissenschaften

Neuer Wirkstoff gegen Anthrax

22.10.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics