Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zu kompliziert gedacht?

05.02.2008
Neuronale Aktivität kann weit besser vorhersagbar sein, als bisher angenommen

Wie empfindlich reagieren neuronale Netzwerke auf äußere Störeinflüsse? Wie genau sind Prozesse in Nervenzellnetzwerken und damit vielleicht das Denken im Gehirn vorherbestimmt? Diese Fragen haben Sven Jahnke, Raoul-Martin Memmesheimer und Marc Timme am Bernstein Zentrum für Computational Neuroscience und Max-Planck-Institut für Dynamik und Selbstorganisation mit Hilfe mathematischer Modelle untersucht. Ihr Ergebnis: Unter bestimmten Bedingungen sind neuronale Netzwerke vorhersagbarer als bisher angenommen. (Physical Review Letters, 1. Februar 2008)

Das Gehirn ist wohl die komplexeste Struktur, die die Evolution je hervorgebracht hat: mehr als 100 Milliarden Nervenzellen kommunizieren über ein weit verzweigtes Netzwerk miteinander. Sie verarbeiten Informationen in Form von elektrischen Impulsen. Jede Zelle verrechnet die Signale der ihr vorgeschalteten Zellen. Wann sie selbst einen Impuls sendet, hängt vom Ergebnis dieser Berechnung ab. Ein solches System neuronaler Signalweitergabe haben Timme und seine Kollegen mathematisch analysiert und ihre daraus abgeleitete Theorie anhand von Computersimulationen überprüft. Wie im Gehirn folgt auch im mathematischen Modell die Dynamik neuronaler Signalweitergabe keiner erkennbaren Ordnung - in scheinbar unvorhersehbarer Weise senden die Nervenzellen Impulse. Aber wie unvorhersehbar ist ein solches System wirklich?

"Chaotisch" nennen Wissenschaftler ein System, in dem geringfügige Unterschiede in den Anfangsbedingungen zu völlig verschiedenen Entwicklung führen können. Das Verhalten chaotischer Systeme lässt sich nicht langfristig vorhersagen. "Der Flügelschlag eines Schmetterlings im Amazonas-Urwald kann einen Orkan in Europa auslösen", so veranschaulichte in den 1960ern der Mathematiker und Meteorologe Edward N. Lorenz diesen Effekt. Im Jahre 1996 zeigten Wissenschaftler an der Hebrew University in Israel in einer theoretischen Studie, dass die im Gehirn beobachtete irreguläre neuronale Aktivität ebenfalls durch ein solches chaotisches Verhalten begründet werden kann. Das Netzwerk würde demnach eine ganz andere Dynamik entwickeln, wenn auch nur ein einzelnes Neuron einen Bruchteil einer Sekunde früher oder später ein Signal aussendet. In den letzten zehn Jahren nahmen nun viele Neurowissenschaftler an, dass solch chaotisches Verhalten grundsätzlich auf der beobachteten Irregularität basiert.

... mehr zu:
»Nervenzelle

Dass dies aber nur unter bestimmten Umständen gilt und längst nicht immer der Fall sein muss, haben Timme und seine Kollegen nun herausgefunden. "Eine Kombination verschiedener neuer Methoden hat es uns ermöglicht, jeden einzelnen Impuls eines Neurons im Netzwerk zu berücksichtigen", so Jahnke. Die Wissenschaftler konnten zeigen, dass ein neuronales Netzwerk unter bestimmten Bedingungen gegenüber kleinen zeitlichen Verschiebungen neuronaler Impulse erstaunlich unempfindlich ist. "Genügend ähnliche Muster neuronaler Aktivität entwickeln keine gänzlich unterschiedliche Dynamik, wie man das von einem chaotischen System erwarten würde, im Gegenteil, sie gleichen sich sogar langfristig aneinander an", sagt Memmesheimer. Im Gehirn könnte dies dazu beitragen, dass bestimmte Aktivitätsmuster hochgradig präzise in der Zeit auftreten, dass also Information in solchen Netzwerken zeitlich exakt verarbeitet wird, Berechnungen genau ausgeführt werden.

Obwohl das Netzwerk unter statistischen Gesichtspunkten sehr irregulär erscheint, muss es sich dabei nicht um ein chaotisches System handeln, es kann vielmehr auch über längere Zeiträume vorhersagbar sein. "Unter welchen Bedingungen das Gehirn nun chaotisch reagiert und wann es ein vorhersagbares Verhalten zeigt, muss noch genauer untersucht werden", so Timme. In jedem Falle ist die Dynamik neuronaler Netzwerke, auch wenn sie hochgradig irregulär ist, nicht immer so kompliziert wie lange gedacht.

Originalveröffentlichung:
Sven Jahnke, Raoul-Martin Memeshimer und Marc Timme (2007). Stable irregular dynamics in complex neural networks. Physical Review Letters 100, 048102. DOI: 10.113/PhysRevLett.100.048102
Kontakt:
Dr. Marc Timme
Head of the Network Dynamics Group
Max Planck Institut für Dynamik und Selbstorganisation
Bernstein Zentrum für Computational Neuroscience
Bunsenstr. 10
37073 Göttingen
timme@nld.ds.mpg.de
Die Bernstein Zentren für Computational Neuroscience in Berlin, Freiburg, Göttingen und München werden vom Bundesministerium für Bildung und Forschung (BMBF) gefördert. Um die komplexe Struktur des Gehirns zu erforschen, verbindet die Computational Neuroscience Experiment, Computersimulation und Theoriebildung.

Katrin Weigmann | idw
Weitere Informationen:
http://www.nld.ds.mpg.de/~timme
http://www.bernstein-zentren.de
http://www.bccn-goettingen.de

Weitere Berichte zu: Nervenzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Lichtgetriebene Nanomotoren - Erfolgreich gekoppelt
28.01.2020 | Ludwig-Maximilians-Universität München

nachricht Warum Gesunde für Kranke so wichtig sind! – Vergleichsstudie geht Fibromyalgie-Syndrom auf den Grund
28.01.2020 | LWL-Universitätsklinikum Bochum der Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnellster hochpräziser 3D-Drucker

3D-Drucker, die im Millimeterbereich und größer drucken, finden derzeit Eingang in die unterschiedlichsten industriellen Produktionsprozesse. Viele Anwendungen benötigen jedoch einen präzisen Druck im Mikrometermaßstab und eine deutlich höhere Druckgeschwindigkeit. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) haben ein System entwickelt, mit dem sich in bisher noch nicht erreichter Geschwindigkeit hochpräzise, zentimetergroße Objekte mit submikrometergroßen Details drucken lassen. Dieses System präsentieren sie in einem Sonderband der Zeitschrift Advanced Functional Materials. (DOI: 10.1002/adfm.201907795).

Um nicht nur die Geschwindigkeit, sondern auch die Zuverlässigkeit ihres Aufbaus zu demonstrieren, haben die Forscherinnen und Forscher eine 60 Kubikmillimeter...

Im Focus: Wie man ein Bild von einem Lichtpuls macht

Um die Form von Lichtpulsen zu messen, brauchte man bisher komplizierte Messanlagen. Ein Team von MPI Garching, LMU München und TU Wien schafft das nun viel einfacher.

Mit modernen Lasern lassen sich heute extrem kurze Lichtpulse erzeugen, mit denen man dann Materialien untersuchen oder sogar medizinische Diagnosen erstellen...

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Im Focus: Integrierte Mikrochips für elektronische Haut

Forscher aus Dresden und Osaka präsentieren das erste vollintegrierte Bauelement aus Magnetsensoren und organischer Elektronik und schaffen eine wichtige Voraussetzung für die Entwicklung von elektronischer Haut.

Die menschliche Haut ist faszinierend und hat viele Funktionen. Eine davon ist der Tastsinn, bei dem vielfältige Informationen aus der Umgebung verarbeitet...

Im Focus: Dresdner Forscher entdecken Mechanismus bei aggressivem Krebs

Enzym blockiert Wächterfunktion gegen unkontrollierte Zellteilung

Wissenschaftler des Universitätsklinikums Carl Gustav Carus Dresden im Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) haben gemeinsam mit einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lichtgetriebene Nanomotoren - Erfolgreich gekoppelt

28.01.2020 | Biowissenschaften Chemie

Warum Gesunde für Kranke so wichtig sind! – Vergleichsstudie geht Fibromyalgie-Syndrom auf den Grund

28.01.2020 | Biowissenschaften Chemie

Kiss and Run: Wie Zellen ihre Bestandteile trennen und recyceln

28.01.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics