Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sind wir aus Glas?

19.12.2007
Die sonderbare Mechanik lebender Zellen

Ihre Grundlagenforschungen an Lungenzellen veranlassten im Jahr 2001 Ben Fabry und Jeffrey Fredberg, zwei Wissenschaftler an der Harvard School of Public Health, die provokante Frage "Sind wir aus Glas?" aufzuwerfen, auf die erst jetzt eine Antwort gefunden wurde. Natürlich meinten sie damit nicht, dass Menschen aus Fensterglas bestehen, sondern wollten auf die verblüffende Ähnlichkeit zwischen dem mechanischen Verhalten lebender Zellen und dem einer großen Klasse unbelebter Materialen wie Schäume, Emulsionen, Pasten usw. hinweisen.

Alle diese Materialien zeigen Fließeigenschaften, die sich mit einem Potenzgesetz (z.B. für das Anwachsen der Verformung als Funktion der Zeit nach dem Anlegen einer konstanten Kraft) mit sehr kleinem Exponenten beschreiben lassen - die Signatur so genannter "weicher glasartiger Rheologie". Die Allgegenwärtigkeit dieser Potenzgesetz-Rheologie weicher Materie wurde bereits vor einigen Jahren durch den theoretischen Physiker Peter Sollich im Sinne "rauher Energielandschaften" interpretiert. In diesem Lichte deuten die Beobachtungen von Fabry und Fredberg darauf hin, dass biologische Organismen in der Nähe eines Glasübergangs leben. Der wissenschaftliche Begriff des Glasübergangs umfasst dabei jenseits des bekannten Erstarrungsübergangs, den der Glasbläser bei seiner Arbeit virtuos kontrolliert, alle nach diesem Muster verlaufenden Zustandsänderungen kondensierter Materie, bei denen sich die Dynamik plötzlich ohne sichtbare strukturelle Ursache dramatisch verlangsamt.

Könnte diese Eigenschaft Zellen helfen, ihre vielfältigen mechanischen Aufgaben, etwa als mechanisches Gerüst, bei der Krafterzeugung, Teilung, Vermehrung und Wanderung in weichem Gewebe usw. optimal zu erfüllen? Dabei sind sie nämlich den unterschiedlichsten dynamischen Störungen ausgesetzt, vom plötzlichen Zucken eines Muskels bis zum allmählichen Wachstum eines Knochens. Trotz intensiver Forschungsaktivitäten blieb der physikalische und biologische Ursprung der scheinbar sehr robusten und universellen glasartigen Dynamik von Zellen jedoch bisher unverstanden.

Wie in der aktuellen Ausgabe der Mitteilungen der Nationalen Akademie der Wissenschaften der USA (Proc. Natl. Acad. Sci. USA) berichtet wird, ist nun ein universeller Mechanismus hinter den faszinierenden Beobachtungen von weicher glasartiger Rheologie in lebenden Zellen entdeckt worden. Durch die Kombination von verschiedenen physikalischen Messtechniken und mathematischen Modellrechnungen haben drei biophysikalische Arbeitsgrupppen aus Jülich, Leipzig und München gezeigt, dass verschlaufte Lösungen von reinem polymerem Aktin auf kleinste Änderungen der Zusammensetzung oder Umgebungsbedingungen mit einer dramatischen Verlangsamung ihrer Brownschen Dynamik reagieren.

Das Polymer Aktin ist der Hauptbestandteil des Zytoskeletts (der "Knochen und Muskeln" im Inneren menschlicher und tierischer Zellen) und daher ein viel versprechendes Untersuchungsobjekt bei der Suche nach einem vereinheitlichten mikroskopischen Verständnis der Zellmechanik. Mit Hilfe hochpräziser dynamischer Lichtstreuexperimente konnte Rudolf Merkel vom Forschungszentrum Jülich diese abnorme zeitliche Verlangsamung der Dynamik nachweisen: Durch geringfügige Erniedrigung der Temperatur verbreitert sich das Spektrum der Relaxationsraten der Polymere exponentiell. Diese Eigenschaft ist auch das Schlüsselelement eines neuen mathematischen Modells der Zellmechanik, welches als "glassy wormlike chain" bezeichnet wird. Diese in Leipzig entwickelte Theorie erklärt nicht nur die Lichtstreudaten über viele Dekaden in der Zeit (von Mikrosekunden bis Stunden), sie sagt auch die komplizierten nichtlinearen mechanischen Eigenschaften richtig vorher, wie sie die Gruppe von Andreas Bausch an der Technischen Universität München gemessen hat. Im Unterschied zu Zellen und Gewebe verhalten sich Lösungen von Aktinfilamenten nämlich über lange Zeiten wie eine Flüssigkeit. Werden sie jedoch ausreichend schnell verformt, so reagieren sie mit einer breiten linearen Antwort, auf die eine ausgeprägte Versteifung folgt, wenn die angelegte Kraft erhöht wird.

Diese Eigenschaft erinnert stark an bekannte Eigenschaften von biochemisch verknüpften Aktinnetzwerken sowie von lebenden Zellen und menschlichem Gewebe (wie jeder leicht durch Ziehen an den eigenen Wangen nachprüfen kann). Wie die Forschergruppe berichtet, nimmt für Aktin der Grad der Versteifung stark mit abnehmender Temperatur zu - in Übereinstimmung mit der allgemeinen Erfahrung, dass unser Körper sich bei Kälte steif anfühlt. Bemerkenswerterweise erzeugen nicht nur die Temperatur sondern auch diverse andere physiologisch relevante Parameter exakt den gleichen Versteifungsübergang. Darüber hinaus stellen sich zunächst ganz unterschiedlich aussehende Reaktionen auf eine mechanische Krafteinwirkung als äquivalent heraus, nachdem man die Deformationsgeschwindigkeit (oder die Zeit) reskaliert. Wenn diese so genannte "rheologische Redundanz" sich auch auf lebende Zellen übertragen ließe, wie Beobachtungen nahe legen, würde das bedeuten, dass die Zellen aus einem enormen Arsenal verschiedener molekularer Mechanismen wählen könnten, um ihre mechanischen Eigenschaften einer einheitlichen und offenbar sehr universellen Gesamtfunktion anzupassen. Eine verwandte, spannende Frage betrifft die Rolle der Zellmechanik bei der Regulation der inneren biologischen Uhr, welche lebende Organismen mit einem emergenten biologischen Zeitbegriff ausstattet. Klaus Kroy vom Institut für Theoretische Physik in Leipzig formuliert es so: "Ist das physikalische Phänomen eines Glasübergangs vielleicht der Schlüssel zum Verständnis der kohärenten Verlangsamung aller Körperfunktionen von Kaltblütern oder Winterschläfern und der Fähigkeit von Bakterien, Millionen von Jahren im Permafrost zu überleben?"

Weitere Informationen:
Prof. Dr. Klaus Kroy
Telefon: 0341 97 32436
E-Mail: Klaus.Kroy@itp.uni-leipzig.de

Dr. Manuela Rutsatz | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de/presse
http://www.uni-leipzig.de/aktuell/index.php?pmnummer=2007297

Weitere Berichte zu: Aktin Beobachtung Dynamik Gewebe Temperatur Zellmechanik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zika und Gelbfieber: Impfstoffe ohne Ei
21.09.2018 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

nachricht Einbahnstraße für das Salz
21.09.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics