Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterielle Influencer – Rhizosphären-Mikrobiom beeinflusst die Ausscheidung von Wurzel-Stoffwechselprodukten

07.02.2020

Die Rhizosphäre beheimatet eine große Vielfalt an Mikroorganismen. Bekannterweise beeinflussen die Stoffwechselprodukte der Wurzeln die Zusammenstellung der Wurzel-Mikrobenflora. Jedoch war es bis vor kurzem ungeklärt, ob oder wie das Mikrobiom die Wurzelausscheidung beeinflussen kann.

Wissenschaftler haben entdeckt, dass mikrobielle Gemeinschaften Veränderungen in der Wurzelausscheidung von Tomatenpflanzen durch Wurzel-zu-Wurzel-Signalisierung (root-to-root signalling) bewirken können.


Bakteriengemeinschaften lösen systemische Signale aus, die zu regulatorischen und metabolischen Veränderungen in entfernten Wurzeln sowie in grünen Teilen der Pflanze führen.

J. Szymanski / IPK

Der zugrundeliegende Vorgang wurde „systematically induced root exudation of metabolites“ (SIREM) („systematisch induzierte Wurzelausscheidung von Stoffwechselprodukten“) benannt.

Wurzeln sind Pflanzenorgane, welche typischerweise Mineralstoffe und Wasser aus der Erde aufnehmen. Es ist weniger bekannt, dass Wurzeln auch Stoffwechselprodukte ausscheiden, welche die Eigenschaften der sie umgebenden Erde beeinflussen. Diese dünne Erdschicht wird als Rhizosphäre bezeichnet und beheimatet eine große Vielfalt an Mikroorganismen, das Wurzel-Mikrobiom.

Indem sie bestimmte Ausscheidungsprodukte herstellen, können Pflanzen nicht nur die Umgebung der Wurzeln verändern, sondern auch die Mikroben in der Rhizosphäre regulieren und mit ihnen kommunizieren. Nun haben Wissenschaftler entdeckt, dass diese Prozesse nicht nur in einer Richtung ablaufen. Bei der Untersuchung von Tomatenpflanzen fanden sie heraus, dass das Mikrobiom die Wurzelausscheidung auch systemisch kontrollieren kann.

Wenn man an Hotspots biologischer Vielfalt denkt, drängt sich einem nicht ein Bild von Wurzeln und der sie umgebenden Erde auf. Jedoch gilt genau dieser Bereich, die Rhizosphäre, als eines der komplexesten Ökosysteme der Welt. Sie beherbergt eine diverse mikrobielle Gemeinschaft, darunter zahlreiche Bakterien, Pilze und Archaeen, welche in den biochemischen Verbindungen gedeihen, die von den Wurzeln im Herzen der Rhizosphäre ausgeschieden werden.

Mit ihren Wurzelausscheidungen prägen Pflanzen die physikalischen und chemischen Eigenschaften der Erde und regulieren das Mikrobiom der Rhizosphäre. Zugleich wissen wir, dass Wurzeln Veränderungen in der Rhizosphäre wahrnehmen und systemische Reaktionen auslösen, um sich gegen Pathogene zu verteidigen oder um sich an veränderte Nährstoffbedingungen anzupassen.

Trotzdem gibt es noch viele offene Fragen zur Dynamik und dem Einfluss des Mikrobioms auf die Wurzel und lange Zeit war nicht klar, ob das Rhizosphären-Mikrobiom auch die Wurzelausscheidung beeinflussen kann.

Ein internationales Forschungsteam, geleitet von Dr. Elisa Korenblum vom Weizmann Institute of Science in Israel, unter Beteiligung von Dr. Jedrzej Szymanski vom Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) in Gatersleben, nahm sich bei der Erforschung von Tomatenwurzeln dieser Fragestellung an.

Die Wissenschaftler führten Experimente mit geteilten Wurzeln durch (sogenannte „split-root experiments“), bei denen die Hälfte der Wurzeln jeder Pflanze Mikroben-reicher Erde ausgesetzt waren, während die andere Hälfte unter sterilen Bedingungen wuchs.

So konnten die Forscher die Effekte verschiedener mikrobieller Gemeinschaften auf das Wurzelsystem sowie die systemischen Veränderungen in den entfernten Wurzeln, aufgrund der angekündigten Gegenwart neuer Mikroorganismen, untersuchen.

Dr. Jedrzej Szymanski, Leiter der Arbeitsgruppe Netzwerkanalyse und Modellierung, folgte dem komplexen Netzwerk an biochemischen und Genexpressions-Signalen, welche die Kommunikation zwischen dem Mikrobiom und der Wurzel kontrollieren, von ihrem Ursprungsort bis in die entfernten Wurzeln.

Infolgedessen entdeckten die Wissenschaftler, dass das Rhizosphären-Mikrobiom der Tomatenpflanzen die chemische Zusammensetzung von Wurzeln und Wurzelausscheidungsprodukten direkt durch systemische Wurzel-zu-Wurzel Signalmechanismen beeinflussen kann.

Zum Beispiel können Bakterien des Genus Bacillus diesen Prozess, welchen die Forscher „systematically induced root exudation of metabolites“ (SIREM) („systematisch induzierte Wurzelausscheidung von Stoffwechselprodukten“) nannten, nutzen, um die Sekretion von Acylzuckern im gesamten Wurzelsystem auszulösen.

Die Entdeckung von SIREM ist ein erster Schritt bei der Entwirrung des regulatorischen Netzwerks, welches die komplexen Beziehungen zwischen Pflanzenwurzeln und dem Mikrobiom umspannt. Vermutlich hat SIREM eine Schlüsselfunktion bei den Interaktionen zwischen Wurzel und Mikrobiom in der Rhizosphäre.

Zudem vermuten die Wissenschaftler, dass die mikrobiell-umprogrammierte systemische Wurzelausscheidung die Aufbereitung von Erde fördert. Die Bedeutung sowie die Ausmaße der Rolle von SIREM müssen jedoch noch erforscht werden.

Wissenschaftliche Ansprechpartner:

Dr. Jedrzej Szymanski
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben
Tel.: +49 39482 5753
E-mail: szymanski@ipk-gatersleben.de

Originalpublikation:

Original Publikation: Elisa Korenblum et. al (2020) “Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling” PNAS first published February 3, 2020 https://doi.org/10.1073/pnas.1912130117

Geschäftsstelle IPK | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ipk-gatersleben.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Erste SARS-CoV-2-Genome aus Österreich veröffentlicht
03.04.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Die Mimik der Mäuse
03.04.2020 | Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste SARS-CoV-2-Genome aus Österreich veröffentlicht

03.04.2020 | Biowissenschaften Chemie

Projekt »Lade-PV« gestartet: Fahrzeugintegrierte PV für Elektro-Nutzfahrzeuge

03.04.2020 | Energie und Elektrotechnik

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics