Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ameisen gegen Elefanten: Wie die Insekten die Fressfeinde von Akazien aufspüren

15.02.2019

Ameisen beschützen afrikanische Akazien gegen Fressfeinde wie Elefanten, Giraffen oder Antilopen und erhalten im Gegenzug Unterschlupf und Nahrung von den Bäumen. Wie die Ameisen die Säugetiere detektieren, haben Bochumer Biologen in Afrika erforscht. In Current Biology berichten sie am 14. Februar 2019, dass die Insekten dafür Vibrationen nutzen und dass sie zwischen Vibrationen durch Säugetiere und Wind unterscheiden können.

Afrikanische Akazien haben viele Feinde. Pflanzenfressende Tiere wie Giraffen, Elefanten oder Antilopen können verheerenden Schaden anrichten. Sie fressen Blätter, ziehen dem Stamm die Rinde ab, brechen Äste oder stürzen den ganzen Baum um. Um sich zu schützen, gehen viele Akazien eine sogenannte mutualistische Beziehung mit Ameisen ein.


Die Akazien-Ameise Crematogaster mimosae verteidigt ihren Wohn-Baum gegen Angreifer.

© RUB, Felix Hager (Dieses Bild darf nur für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum im Kontext dieser Presseinformation verwendet werden.)


Felix Hager und Kathrin Krausa sind nach Afrika gereist, um dort das Verhalten von Ameisen zu untersuchen.

© RUB, Marquard (Dieses Foto darf nur für eine Berichterstattung mit Bezug zur Ruhr-Universität Bochum im Kontext dieser Presseinformation verwendet werden.)

Ameisen als Bodyguards

Sie stellen Ameisen sozusagen als Bodyguards ein, bieten Nahrung und Unterschlupf und erhalten im Austausch Schutz vor Pflanzenfressern.

Sobald die Akazie angefressen wird, strömen Ameisen aus und verteidigen aggressiv ihren Baum. Obwohl Ameisen viel kleiner sind, können sie Elefanten oder Giraffen verjagen, indem sehr viele Tiere gemeinsam sehr schnell reagieren.

Dr. Kathrin Krausa und Dr. Felix A. Hager von der Arbeitsgruppe Verhaltensbiologie und Didaktik der Biologie der Ruhr-Universität Bochum (RUB) wollten wissen, wie Ameisen es schaffen, so schnell zu reagieren und den Angreifer zu finden.

Dafür untersuchten sie das Verhalten der Akazien-Ameisen Crematogaster mimosae in Kenia. Ihre Ergebnisse wurden nun in dem renommierten Journal Current Biology publiziert.

Die beiden Forscher interessierte vor allem, was die Ameisen alarmiert. Elefanten sind kaum zu übersehen, nachts jedoch, und mit den relativ schlechten Augen der Ameisen, sind visuelle Reize nur sehr eingeschränkt von Nutzen.

Die Ausbreitung chemischer Reize, mit denen bisher die Abwehrreaktion der Ameisen erklärt wurde, ist verhältnismäßig langsam und stark vom Wind abhängig. Daher wären sie keine zuverlässige Informationsquelle.

„Wir hielten es darum für viel wahrscheinlicher, dass die Ameisen mechanische Reize detektieren“, sagt Kathrin Krausa. Damit fiel ihre Forschung in den Bereich der Biotremologie. Dies ist eine junge wissenschaftliche Disziplin, die die Produktion, Ausbreitung und Wahrnehmung von substrat-getragenen Vibrationen und ihren Effekt auf Organismen untersucht.

Vibrationen können durch Tiere, aber auch durch Wind hervorgerufen werden

„Eine Akazie in der afrikanischen Savanne vibriert nicht nur, wenn ein Elefant an ihr rüttelt“, erklärt Felix Hager. „Auch Wind versetzt Äste oder den ganzen Baum in Schwingungen.“

Die beiden Forscher wollten daher die durch Wind verursachten Vibrationen mit denen von fressenden Säugetieren vergleichen. „Anstelle von Elefanten, die zwar zahlreich vorhanden, aber schwer zu bändigen waren, haben wir eine Ziege an den Akazien fressen lassen“, so Kathrin Krausa.

Die Messungen zeigen, dass sich Vibrationen verursacht von fressenden Säugetieren klar von den vom Wind verursachten Vibrationen unterscheiden, sie sind hochfrequenter. Auch Ameisen nehmen diesen Unterschied wahr. Tatsächlich konnten Kathrin Krausa und Felix Hager zeigen, dass Vibrationen, die durch das Abzupfen von Blättern verursacht werden, die alarmierenden Reize sind.

Ameisen reagieren auf Säugetier-Vibrationen mit verstärktem Patrouillieren, wohingegen sich ihre Aktivität nicht ändert, wenn der Baum sich im Wind bewegt.

Die Vibrationen, die entstehen, wenn ein Säugetier ein Blatt abzupft, sind so stark, dass sie über den gesamten Baum weitergeleitet und von den Ameisen wahrgenommen werden. „So werden die überall auf dem Baum verteilten Ameisen innerhalb kürzester Zeit alarmiert“, so die Forscher.

Tropotaktische Orientierung

Eine durch Vibrationen alarmierte Ameise orientiert sich laut der Biologen unmittelbar in die Richtung, aus der die Vibrationen kommen. Sie erhält also eine Richtungsinformation. Dank dieser tropotaktischen Orientierung können Ameisen sehr schnell den Angreifer lokalisieren und bekämpfen. Vibrationen sind der Schlüsselreiz, den Ameisen nutzen, um die Akazie zu verteidigen.

Förderung

Die Arbeiten wurden finanziell durch ein Feodor-Lynen-Forschungsstipendium der Alexander-von-Humboldt-Stiftung an Dr. Felix A. Hager unterstützt.

Redaktion: Raffaela Römer

Wissenschaftliche Ansprechpartner:

Dr. Felix A. Hager und Dr. Kathrin Krausa
Arbeitsgruppe Verhaltensbiologie und Didaktik der Biologie
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 29017
E-Mail: felix.hager@rub.de, kathrin.krausa@rub.de

Originalpublikation:

Felix Hager, Kathrin Krausa: Acacia ants respond to plant-borne vibrations caused by mammalian browsers, in: Current Biology, 2019, DOI: 10.1016/j.cub.2019.01.007

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ionenkanal mit Türsteher: Calcium-Ionen blockieren Kanalöffnung in Abhängigkeit vom pH-Wert
18.06.2019 | Johannes Gutenberg-Universität Mainz

nachricht Kältefalle für Zellen und Organismen - Forschung an verbessertem Mikroskopieverfahren
18.06.2019 | Technische Universität Darmstadt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Saubere Lunge dank Laserprozessabsaugung

18.06.2019 | Maschinenbau

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungsnachrichten

Ionenkanal mit Türsteher: Calcium-Ionen blockieren Kanalöffnung in Abhängigkeit vom pH-Wert

18.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics