Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Abwehrzellen im Gehirn leben länger als gedacht

29.08.2017

Bei Mäusen können Mikrogliazellen die gesamte Lebenszeit der Tiere erreichen. Ihre Lebensdauer ist eng mit ihrer möglichen Rolle beim Immungedächtnis und neurodegenerativen Erkrankungen verbunden

Krankheitserreger und Abfall beseitigen – das ist die Hauptaufgabe von Mikrogliazellen. Sie gehören zur Gruppe der Nicht-Nervenzellen im Gehirn, deren Aufgabe es ist, unsere Denkzellen bei der Arbeit zu unterstützen. Anders als bisher angenommen können die Fresszellen bei Mäusen genauso lange leben wie die Maus selbst.


Die Markierung einer einzelnen Mikrogliazelle (in Gelb) erlaubt die Unterscheidung von anderen Mikroglia (in Grün). Auf diese Weise konnten die Forscher die Lebensdauer untersuchen.

Copyright: Petra Füger, 2017

Das berichten Forscher am Hertie-Institut für klinische Hirnforschung, der Universität Tübingen und dem Deutschen Zentrum für Neurodegenerative Erkrankungen in Tübingen in einer Online-Vorabveröffentlichung am 28. August auf der Webseite der Fachzeitschrift Nature Neuroscience. In ihrer Studie verfolgten die Wissenschaftler einzelne Mikrogliazellen über ihre gesamte Lebenspanne unter dem Mikroskop.

Die unerwartet lange Lebenszeit gibt Hinweise auf weitere mögliche Aufgaben der bislang noch wenig erforschten Hirnzellen: „Ihre Langlebigkeit ermöglicht es ihnen, zu lernen und zu altern“, erklärt Studienleiter Professor Dr. Mathias Jucker. „Damit könnten sie ein Immungedächtnis ausbilden und zur Entwicklung neurodegenerativer Erkrankungen beitragen.“

Bislang ist unklar, ob Mikrogliazellen ein Gedächtnis für Krankheitserreger ausbilden können, wie es Immunzellen im restlichen Körper tun. Diese Funktion sorgt für eine schnellere und effizientere Aktivierung der Abwehrzellen bei einem Zweitkontakt.

„Wenn Mikrogliazellen nur kurz leben würden, würde ein Immungedächtnis bei ihnen wenig Sinn ergeben. Jetzt, da wir wissen, dass das nicht der Fall ist, ist es gut vorstellbar“, sagt Dr. Angelos Skodras, der ebenfalls federführend an der Studie beteiligt war. Tatsächlich gibt es erste Anzeichen, dass eine frühe Anregung des Immunsystems im Gehirn die Aktivität der Mikrogliazellen dauerhaft verändert.

Darüber hinaus stehen Mikroglia bereits seit Längerem in Verdacht, eine Rolle bei der Entstehung altersbedingter neurologischer Erkrankungen zu spielen. „Eine erstaunliche Erkenntnis der letzten Jahre ist, dass fast alle Risikofaktoren für die Alzheimererkrankung Veränderungen in Genen sind, die in Mikrogliazellen aktiv sind“, so Jucker. Wie die Zellen zur Krankheitsentwicklung beitragen können, ist noch unklar. „Der Alterungsprozess dieser Mikroglia könnte dabei von Bedeutung sein – und hierfür ist eine allgemein lange Lebensdauer dieser Hirnzellen die Voraussetzung.“

Die Anzahl der Mikrogliazellen ist im gesunden Gehirn immer etwa gleich. Bislang war in der Wissenschaft aber umstritten, ob es sich bei Mikroglia um kurzlebige Zellen handelt, die sich rasch teilen und erneuern oder um sich selten teilende, langlebige Zellen handelt. Bisherige Studien erlaubten nur indirekte Antworten oder führten zu widersprüchlichen Ergebnissen.

Die Tübinger Hirnforscher beschlossen daher, der Frage auf den Grund zu gehen. Dafür markierte Erstautorin Dr. Petra Füger gezielt einzelne Mikrogliazellen in Mäusen und beobachteten die Zellen im Zeitverlauf unter dem 2-Photonen-Mikroskop. „Das Ergebnis unserer Untersuchung war völlig offen. In unserer Abteilung hatten wir eine Wette laufen. Die einzelnen Vorhersagen reichten von einigen Monaten bis zu mehr als einem Jahr“, berichtet Jucker. Tatsächlich zeigte die Hälfte der untersuchten Zellen eine errechnete Lebensdauer von bis zu 28 Monaten, was einem ganzen Mäuseleben entspricht. „Mit unserer Studie konnten wir den grundsätzlichen Beweis für die Langlebigkeit von Mikroglia erbringen“, so die Autoren.

Originalpublikation:
Füger et al. (2017): Microglia turnover with aging and in an Alzheimer´s model via long-term in vivo single-cell imaging. Nature Neuroscience, Online Vorabveröffentlichung am 28.08.2017
doi: 10.1038/nn.4631

Kontakt:
Prof. Dr. Mathias Jucker
Hertie-Institut für klinische Hirnforschung
Universität Tübingen
Telefon +49 7071 29- 86863
mathias.jucker[at]uni-tuebingen.de

Weitere Informationen:

https://www.hih-tuebingen.de Hertie-Institut für klinische Hirnforschung
https://www.uni-tuebingen.de Eberhard Karls Universität Tübingen
https://www.dzne.de Deutsches Zentrum für Neurodegenerative Erkrankungen

Dr. Mareike Kardinal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Magische kolloidale Cluster
11.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kupferverbindung als Recheneinheit in Quantencomputern
11.12.2018 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

11.12.2018 | Physik Astronomie

Besser Bohren – Neues Nanokomposit stabilisiert Bohrflüssigkeiten

11.12.2018 | Geowissenschaften

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics