Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3D-Struktur der DNA bildet umschriebenen Raum zur Aktivierung der Genexpression durch freie lncRNAs

08.05.2018

Forscher/innen des Max-Planck-Instituts für molekulare Genetik (MPIMG) in Berlin konnten zeigen, dass eine lncRNA namens A-ROD nur funktionstüchtig ist, wenn sie vom Chromatin in das Kernplasma abgegeben wird. In der aktuellen Ausgabe der Zeitschrift Nature Communications beschreiben die Wissenschaftler/innen, dass sich A-ROD vollständig vom Chromatin ablösen muss, um regulatorisch aktiv werden zu können. Durch die dreidimensionale Struktur der DNA wird gewährleistet, dass sich A-ROD bei der Ablösung bereits in direkter Nähe zu seinem Zielgen befindet. Dies kann unser Verständnis der dynamischen Regulation der Genexpression in biologischen Prozessen stark beeinflussen.

Die Genome von Säugetieren enthalten nicht nur die Informationen für die Proteine des Organismus, sondern auch für Tausende von langen nicht-kodierenden RNAs (lncRNAs). Diese haben regulatorische Funktionen zum Beispiel bei der Entwicklung des Organismus oder der Entstehung von Krankheiten.


Die lange nicht-kodierende RNA A-ROD entfaltet ihre Aktivität innerhalb einer DNA-Schlaufe, wo sie die Bindung von Proteinen an das DKK1-Gen vermittelt.

© E. Ntini / MPI für molekulare Genetik

lncRNAs entstehen mithilfe der gleichen molekularen Maschinerie wie die mRNAs. Um ihre Funktion auszuüben, verbleiben sie aber innerhalb des Zellkerns, wo sie mit Proteinen zusammenwirken und deren Bindung an die DNA vermitteln oder deren enzymatische Aktivität verstärken können. Sie sind häufig im Kern und am Chromatin angereichert, bislang war aber unklar, ob sie sich für ihre Funktion bei der Regulation der Transkription vom Chromatin ablösen müssen.

Jetzt haben die Forschungsgruppen „Lange nicht-kodierende RNAs“ unter der Leitung von Ulf Ørom (jetzt an der Universität Aarhus, Dänemark) und „RNA-Bioinformatik“ unter der Leitung von Annalisa Marsico eine lncRNA namens A-ROD (für Activating Regulator of DKK1) untersucht, die die Expression des DKK1-Gens verstärkt.

Die Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für molekulare Genetik (MPIMG) in Berlin konnten zeigen, dass A-ROD nur in dem Moment funktionsfähig ist, wenn es vom Chromatin in das Kernplasma abgegeben wird. Nur dann kann es Transkriptionsfaktoren - Proteine, die die Aktivität von Genen kontrollieren - an spezifische Stellen der DNA bringen, um so die Genexpression zu verstärken.

„Enhancer kontrollieren die Expression von Genen, die auf dem langgestreckten DNA-Faden weit von ihnen entfernt liegen“, erklärt Evgenia Ntini, Erstautorin der jetzt veröffentlichten Studie. „Interessanterweise stellten wir fest, dass lncRNAs von Enhancern, die mit ihren Zielgenen innerhalb einer gemeinsamen DNA-Schlaufe liegen, seltener an das Chromatin gebunden sind und sich innerhalb des Kernplasmas anreichern. Die Loslösung der lncRNA vom Chromatin scheint für ihre Funktion erforderlich zu sein.“

In der Chromatinform bildet der lineare DNA-Faden eine dreidimensionale Struktur mit festgelegten Schlaufen, wodurch genau definierte DNA-Abschnitte, die auf dem langgestreckten DNA-Faden weit voneinander entfernt liegen, in enge Nachbarschaft zueinander gelangen. Dies ist auch bei dem A-ROD-Enhancer und seinem Zielgen der Fall. „Innerhalb der Schlaufe kann A-ROD sofort mit dem DKK1-Gen und regulatorischen RNA-bindenden Proteinen zusammenwirken, um die Genexpression zu aktivieren“, sagt Ntini.

Auf der Grundlage ihrer Ergebnisse schlagen die Forscherinnen und Forscher eine neue Art der Genregulation vor, die durch lncRNAs vermittelt wird. Sie gehen davon aus, dass die lncRNA ihre Funktion nur ausüben kann, nachdem sie vollständig transkribiert ist und sich von der Transkriptionsstelle gelöst hat.

Dabei muss sich der A-ROD-Enhancer in direkter Nähe zum DKK1-Gen befinden. Damit wäre nicht die Transkription der lncRNA der kritische Schritt für die Genaktivierung, sondern vielmehr ihre Freisetzung vom Chromatin, so dass sie für die Umgebung zugänglich wird, um regulatorische Proteine binden zu können.

Die Ergebnisse sind sowohl aus experimenteller als auch aus therapeutischer Sicht spannend, da die Ansätze zur gezielten Beeinflussung der RNA-Expression im Zytoplasma, im Kernplasma und im Chromatin sehr unterschiedlich sind.

Die Forscherinnen und Forscher glauben, dass diese Unterschiede genutzt werden könnten, um die Ansätze zur gezielten Beeinflussung von RNA-abhängigen Prozessen bei Krankheiten zu optimieren. Als nächstes wollen sie weitere Enhancer-ähnliche ncRNAs identifizieren, um ihr Potential und etwaige Einsatzmöglichkeiten für die Regulation der Genexpression zu untersuchen.

Originalpublikation:
Evgenia Ntini, Annita Louloupi, Julia Liz, Jose Muino, Annalisa Marsico & Ulf Andersson Vang Ørom
Long ncRNA A-ROD activates its target gene DKK1 at its release from chromatin.
Nature Communications 9: 1636 (2018)
doi:10.1038/s41467-018-04100-3

Weitere Informationen:

https://www.molgen.mpg.de/2733742/RNA-Bioinformatics - Webseite der Forschungsgruppe

Dr. Patricia Marquardt | Max-Planck-Institut für molekulare Genetik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Krebszellen Winterschlaf halten
16.07.2018 | Universitätsklinikum Carl Gustav Carus Dresden

nachricht Feinstaub macht Bäume anfälliger gegen Trockenheit
16.07.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vertikales Begrünungssystem Biolit Vertical Green<sup>®</sup> auf Landesgartenschau Würzburg

16.07.2018 | Architektur Bauwesen

Feinstaub macht Bäume anfälliger gegen Trockenheit

16.07.2018 | Biowissenschaften Chemie

Wie Krebszellen Winterschlaf halten

16.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics