Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3-D-Nanostruktur eines Knochens sichtbar gemacht

19.11.2015

Knochen bestehen aus winzigen Fasern, die etwa tausend Mal feiner sind als ein menschliches Haar. Mit einer neuartigen computerbasierten Auswertungsmethode konnten Forschende des Paul Scherrer Instituts PSI zum ersten Mal die Ordnung und Ausrichtung dieser Nanostrukturen innerhalb eines gesamten Knochenstücks sichtbar machen.

Die Anordnung der Nanostruktur eines dreidimensionalen Objektes lässt sich dank einer neuen Methode von Forschenden am Paul Scherrer Institut PSI sichtbar machen. An einem rund zweieinhalb Millimeter langen Stück eines menschlichen Rückenwirbels haben die Forschenden dies in Zusammenarbeit mit Knochen-Biomechanikern der ETH Zürich und der Universität Southampton, England, demonstriert.


Der Knochen und seine Nanostruktur: Dank ihrer neu entwickelten Auswertungsmethode konnten Forschende am PSI die Ausrichtung der winzigen Kollagenfibrillen kartieren.

Grafik: Paul Scherrer Institut/Marianne Liebi

Knochen bestehen aus winzigen Fasern, sogenannten Kollagenfibrillen. Deren dreidimensionale lokale Ausrichtung wurde nun entlang des kompletten Knochenstücks sichtbar gemacht. Diese Eigenschaften bestimmen massgeblich die Stabilität eines Knochens.

Somit könnte die Abbildungstechnik unter anderem der Erforschung der Osteoporose zugutekommen. Allgemein eignet sie sich nicht nur zur Untersuchung biologischer Objekte, sondern auch zur Entwicklung zukunftsträchtiger Materialien.

Die Daten wurden an der Synchrotron Lichtquelle Schweiz SLS des PSI gewonnen, wo das Knochenstück mit einem extrem feinen und intensiven Röntgenstrahl durchleuchtet wurde. Dieser Strahl rastert über die Probe und vermisst sie so Punkt für Punkt. Dadurch kann an jedem Messpunkt die lokale Nanostruktur bestimmt werden.

Der entscheidende Schritt von 2-D zu 3-D

Bisher liessen sich nur zweidimensionale Proben auf diese Art abrastern und untersuchen. Klassischerweise werden die Untersuchungsobjekte daher in sehr dünne Scheiben geschnitten. "Allerdings lässt sich nicht jedes Objekt beliebig dünn schneiden", erklärt Projektbetreuer Manuel Guizar-Sicairos.

"Und manchmal zerstört oder verändert man dabei gerade die Nanostruktur, die man untersuchen wollte." Auch ist ganz grundsätzlich eine zerstörungsfreie Methode vorzuziehen, bei der also das Untersuchungsobjekt nach der Messung noch zur Verfügung steht.

Um nun auch dreidimensionale Objekte abbilden zu können, rasterten die PSI-Forschenden ihre Probe immer wieder, drehten sie jedoch zwischen zwei Aufnahmen jeweils um einen kleinen Winkel. So erhielten sie Messdaten aus allen Raumrichtungen, die ihnen erlaubten, das dreidimensionale Objekt inklusive seiner Nanostruktur nachträglich im Computer zu rekonstruieren.

Damit knüpft die neue Messmethode der PSI-Forschenden an ein Prinzip aus der Computertomographie (CT) an. Auch dort werden zunächst viele Röntgenaufnahmen eines Patienten oder Objekts aus verschiedenen Richtungen angefertigt und anschliessend per Computerauswertung zu den gewünschten Bildern zusammengesetzt. Allerdings nutzt die herkömmliche Computertomographie keinen feinen Röntgenstrahl, sondern das Objekt wird flächig beleuchtet.

Dadurch lässt sich per Computertomographie zwar die variierende Dichte des Materials abbilden, nicht jedoch die Ausrichtung der zugrunde liegenden Nanostruktur. Letzteres wird erst möglich durch den schmalen, intensiven Röntgenstrahl der SLS sowie durch hochmoderne Detektoren.

Bilder entstehen dank mathematischer Algorithmen

Der komplexeste Schritt war jedoch, aus der immensen Zahl der Daten per Computer ein Bild der dreidimensionalen Probe zusammenzusetzen. Hierfür entwickelten die Forschenden einen eigenen aufwendigen mathematischen Algorithmus. "Der Röntgenstrahl durchquert immer die Probe in ihrer ganzen Tiefe und wir sehen nur das Endergebnis", erklärt Marianne Liebi, Erstautorin der Studie. "Wie die dreidimensionale Struktur aussieht, das müssen wir nachträglich herausfinden."

Liebis Algorithmus sucht für jeden Punkt im Inneren der Probe die Struktur, die am besten den gemessenen Daten entspricht. Dabei nutzten die Forschenden den Umstand aus, dass sie von einer gewissen Symmetrie bei der Anordnung der Kollagenfibrillen im Knochen ausgehen konnten und reduzierten dadurch ihre Daten auf ein berechenbares Mass. Dennoch blieben 2,2 Millionen Parameter. Diese wurden per Computerprogramm optimiert, bis die Forschenden das Bild der Probe erhielten, das die Messung am besten erklärte.

"Ich war überrascht, dass nach so viel purer Mathematik ein Bild entstand, das wirklich wie ein Knochen aussah," so Liebi. "Die Details darin sahen direkt einleuchtend aus."

Wie eine Landkarte der Vegetationszonen

Während die klassische Computertomographie Graustufen-Bilder erzeugt, entstehen mit der neuen Methode quasi bunte Abbildungen mit deutlich mehr Information: Die farbigen Linien zeigen die Orientierung auf der Nanoskala an und geben sogar Auskunft über das Ausmass der Orientierung – ob also die Kollagenfibrillen an einem bestimmten Punkt grösstenteils, teilweise oder gar nicht parallel zueinander liegen.

"Wir können zwar nicht jede einzelne Kollagenfibrille direkt abbilden, aber wir brauchen das auch gar nicht", erklärt Guizar-Sicairos. "Unsere Bildgebung gleicht eher einer Landkarte der Vegetationszonen. Auch dafür wird jeweils über ein gewisses Areal gemittelt und gesagt: Hier gibt es vor allem Nadelbäume, dort Laubbäume und dort Mischwälder." So lässt sich die Vegetation ganzer Kontinente kartieren, ohne jede einzelne Baumart bestimmen zu müssen.

Analog lässt sich sagen, dass bei herkömmlichen mikro- und nanoskopischen Methoden diese Abbildung einzelner Bäume noch nötig war. Darum galt: Je kleiner die Struktur eines Objekts, desto kleiner musste auch der Bildausschnitt sein. Durch ihre neue Methode ist es den PSI-Forschenden gelungen, diese Regel zu umgehen: Von dem mit blossem Auge sichtbaren Knochenstück haben sie die Anordnung der Nanostruktur in einem einzigen Bild festgehalten.

Zeitgleich mit ihrer Veröffentlichung erscheint ebenfalls im Fachblatt Nature eine Publikation unter Federführung eines anderen Forscherteams, bei der Liebi und Guizar-Sicairos Mitautoren sind. Hierin wird eine alternative Auswertungsmethode vorgestellt, die zu einem ähnlichen Forschungsergebnis führt: Den Forschenden gelang es, die dreidimensionale innere Nanostruktur eines menschlichen Zahns zu bestimmen.

Text: Paul Scherrer Institut/Laura Hennemann


Über das PSI

Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 380 Mio.

Kontakt / Ansprechpartner

Dr. Marianne Liebi, Forschungsgruppe für Kohärente Röntgenstreuung, Labor für Makromoleküle und Bioimaging, Paul Scherrer Institut,
Telefon: +41 56 310 54 53, E-Mail: marianne.liebi@psi.ch [Deutsch, Englisch]

Dr. Manuel Guizar-Sicairos, Forschungsgruppe für Kohärente Röntgenstreuung, Labor für Makromoleküle und Bioimaging, Paul Scherrer Institut,
Telefon: +41 56 310 34 09, E-Mail: manuel.guizar-sicairos@psi.ch [Englisch, Spanisch]

Originalveröffentlichungen

Nanostructure surveys on macroscopic specimens by small-angle scattering tensor tomography
M. Liebi, M. Georgiadis, A. Menzel, P. Schneider, J. Kohlbrecher, O. Bunk and M. Guizar-Sicairos,
Nature 19. November 2015
DOI: http://dx.doi.org/10.1038/nature16056

Six-dimensional real and reciprocal space small-angle X-ray scattering tomography
F. Schaff, M. Bech, P. Zaslansky, C. Jud, M. Liebi, M. Guizar-Sicairos and F. Pfeiffer,
Nature 19. November 2015
DOI: http://dx.doi.org/10.1038/nature16060

Weitere Informationen:

http://psi.ch/KA1k Medienmitteilung auf der Seite des PSI mit weiteren Abbildungen
http://www.psi.ch/coherent-x-ray-scattering Forschungsgruppe für Kohärente Röntgenstreuung (Englisch)

Laura Hennemann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?
03.07.2020 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Wirkstoffe aus Kieler Meeresalgen als Mittel gegen Infektionen und Hautkrebs entdeckt
03.07.2020 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Im Focus: Elektronen auf der Überholspur

Solarzellen auf Basis von Perowskitverbindungen könnten bald die Stromgewinnung aus Sonnenlicht noch effizienter und günstiger machen. Bereits heute übersteigt die Labor-Effizienz dieser Perowskit-Solarzellen die der bekannten Silizium-Solarzellen. Ein internationales Team um Stefan Weber vom Max-Planck-Institut für Polymerforschung (MPI-P) in Mainz hat mikroskopische Strukturen in Perowskit-Kristallen gefunden, die den Ladungstransport in der Solarzelle lenken können. Eine geschickte Ausrichtung dieser „Elektronen-Autobahnen“ könnte Perowskit-Solarzellen noch leistungsfähiger machen.

Solarzellen wandeln das Licht der Sonne in elektrischen Strom um. Dabei wird die Energie des Lichts von den Elektronen des Materials im Inneren der Zelle...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: Das leichteste elektromagnetische Abschirmmaterial der Welt

Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die...

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?

03.07.2020 | Biowissenschaften Chemie

Effizient, günstig und ästhetisch: 
Forscherteam baut Elektroden aus Laubblättern

03.07.2020 | Energie und Elektrotechnik

Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

03.07.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics