Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3-D-Nanostruktur eines Knochens sichtbar gemacht

19.11.2015

Knochen bestehen aus winzigen Fasern, die etwa tausend Mal feiner sind als ein menschliches Haar. Mit einer neuartigen computerbasierten Auswertungsmethode konnten Forschende des Paul Scherrer Instituts PSI zum ersten Mal die Ordnung und Ausrichtung dieser Nanostrukturen innerhalb eines gesamten Knochenstücks sichtbar machen.

Die Anordnung der Nanostruktur eines dreidimensionalen Objektes lässt sich dank einer neuen Methode von Forschenden am Paul Scherrer Institut PSI sichtbar machen. An einem rund zweieinhalb Millimeter langen Stück eines menschlichen Rückenwirbels haben die Forschenden dies in Zusammenarbeit mit Knochen-Biomechanikern der ETH Zürich und der Universität Southampton, England, demonstriert.


Der Knochen und seine Nanostruktur: Dank ihrer neu entwickelten Auswertungsmethode konnten Forschende am PSI die Ausrichtung der winzigen Kollagenfibrillen kartieren.

Grafik: Paul Scherrer Institut/Marianne Liebi

Knochen bestehen aus winzigen Fasern, sogenannten Kollagenfibrillen. Deren dreidimensionale lokale Ausrichtung wurde nun entlang des kompletten Knochenstücks sichtbar gemacht. Diese Eigenschaften bestimmen massgeblich die Stabilität eines Knochens.

Somit könnte die Abbildungstechnik unter anderem der Erforschung der Osteoporose zugutekommen. Allgemein eignet sie sich nicht nur zur Untersuchung biologischer Objekte, sondern auch zur Entwicklung zukunftsträchtiger Materialien.

Die Daten wurden an der Synchrotron Lichtquelle Schweiz SLS des PSI gewonnen, wo das Knochenstück mit einem extrem feinen und intensiven Röntgenstrahl durchleuchtet wurde. Dieser Strahl rastert über die Probe und vermisst sie so Punkt für Punkt. Dadurch kann an jedem Messpunkt die lokale Nanostruktur bestimmt werden.

Der entscheidende Schritt von 2-D zu 3-D

Bisher liessen sich nur zweidimensionale Proben auf diese Art abrastern und untersuchen. Klassischerweise werden die Untersuchungsobjekte daher in sehr dünne Scheiben geschnitten. "Allerdings lässt sich nicht jedes Objekt beliebig dünn schneiden", erklärt Projektbetreuer Manuel Guizar-Sicairos.

"Und manchmal zerstört oder verändert man dabei gerade die Nanostruktur, die man untersuchen wollte." Auch ist ganz grundsätzlich eine zerstörungsfreie Methode vorzuziehen, bei der also das Untersuchungsobjekt nach der Messung noch zur Verfügung steht.

Um nun auch dreidimensionale Objekte abbilden zu können, rasterten die PSI-Forschenden ihre Probe immer wieder, drehten sie jedoch zwischen zwei Aufnahmen jeweils um einen kleinen Winkel. So erhielten sie Messdaten aus allen Raumrichtungen, die ihnen erlaubten, das dreidimensionale Objekt inklusive seiner Nanostruktur nachträglich im Computer zu rekonstruieren.

Damit knüpft die neue Messmethode der PSI-Forschenden an ein Prinzip aus der Computertomographie (CT) an. Auch dort werden zunächst viele Röntgenaufnahmen eines Patienten oder Objekts aus verschiedenen Richtungen angefertigt und anschliessend per Computerauswertung zu den gewünschten Bildern zusammengesetzt. Allerdings nutzt die herkömmliche Computertomographie keinen feinen Röntgenstrahl, sondern das Objekt wird flächig beleuchtet.

Dadurch lässt sich per Computertomographie zwar die variierende Dichte des Materials abbilden, nicht jedoch die Ausrichtung der zugrunde liegenden Nanostruktur. Letzteres wird erst möglich durch den schmalen, intensiven Röntgenstrahl der SLS sowie durch hochmoderne Detektoren.

Bilder entstehen dank mathematischer Algorithmen

Der komplexeste Schritt war jedoch, aus der immensen Zahl der Daten per Computer ein Bild der dreidimensionalen Probe zusammenzusetzen. Hierfür entwickelten die Forschenden einen eigenen aufwendigen mathematischen Algorithmus. "Der Röntgenstrahl durchquert immer die Probe in ihrer ganzen Tiefe und wir sehen nur das Endergebnis", erklärt Marianne Liebi, Erstautorin der Studie. "Wie die dreidimensionale Struktur aussieht, das müssen wir nachträglich herausfinden."

Liebis Algorithmus sucht für jeden Punkt im Inneren der Probe die Struktur, die am besten den gemessenen Daten entspricht. Dabei nutzten die Forschenden den Umstand aus, dass sie von einer gewissen Symmetrie bei der Anordnung der Kollagenfibrillen im Knochen ausgehen konnten und reduzierten dadurch ihre Daten auf ein berechenbares Mass. Dennoch blieben 2,2 Millionen Parameter. Diese wurden per Computerprogramm optimiert, bis die Forschenden das Bild der Probe erhielten, das die Messung am besten erklärte.

"Ich war überrascht, dass nach so viel purer Mathematik ein Bild entstand, das wirklich wie ein Knochen aussah," so Liebi. "Die Details darin sahen direkt einleuchtend aus."

Wie eine Landkarte der Vegetationszonen

Während die klassische Computertomographie Graustufen-Bilder erzeugt, entstehen mit der neuen Methode quasi bunte Abbildungen mit deutlich mehr Information: Die farbigen Linien zeigen die Orientierung auf der Nanoskala an und geben sogar Auskunft über das Ausmass der Orientierung – ob also die Kollagenfibrillen an einem bestimmten Punkt grösstenteils, teilweise oder gar nicht parallel zueinander liegen.

"Wir können zwar nicht jede einzelne Kollagenfibrille direkt abbilden, aber wir brauchen das auch gar nicht", erklärt Guizar-Sicairos. "Unsere Bildgebung gleicht eher einer Landkarte der Vegetationszonen. Auch dafür wird jeweils über ein gewisses Areal gemittelt und gesagt: Hier gibt es vor allem Nadelbäume, dort Laubbäume und dort Mischwälder." So lässt sich die Vegetation ganzer Kontinente kartieren, ohne jede einzelne Baumart bestimmen zu müssen.

Analog lässt sich sagen, dass bei herkömmlichen mikro- und nanoskopischen Methoden diese Abbildung einzelner Bäume noch nötig war. Darum galt: Je kleiner die Struktur eines Objekts, desto kleiner musste auch der Bildausschnitt sein. Durch ihre neue Methode ist es den PSI-Forschenden gelungen, diese Regel zu umgehen: Von dem mit blossem Auge sichtbaren Knochenstück haben sie die Anordnung der Nanostruktur in einem einzigen Bild festgehalten.

Zeitgleich mit ihrer Veröffentlichung erscheint ebenfalls im Fachblatt Nature eine Publikation unter Federführung eines anderen Forscherteams, bei der Liebi und Guizar-Sicairos Mitautoren sind. Hierin wird eine alternative Auswertungsmethode vorgestellt, die zu einem ähnlichen Forschungsergebnis führt: Den Forschenden gelang es, die dreidimensionale innere Nanostruktur eines menschlichen Zahns zu bestimmen.

Text: Paul Scherrer Institut/Laura Hennemann


Über das PSI

Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 380 Mio.

Kontakt / Ansprechpartner

Dr. Marianne Liebi, Forschungsgruppe für Kohärente Röntgenstreuung, Labor für Makromoleküle und Bioimaging, Paul Scherrer Institut,
Telefon: +41 56 310 54 53, E-Mail: marianne.liebi@psi.ch [Deutsch, Englisch]

Dr. Manuel Guizar-Sicairos, Forschungsgruppe für Kohärente Röntgenstreuung, Labor für Makromoleküle und Bioimaging, Paul Scherrer Institut,
Telefon: +41 56 310 34 09, E-Mail: manuel.guizar-sicairos@psi.ch [Englisch, Spanisch]

Originalveröffentlichungen

Nanostructure surveys on macroscopic specimens by small-angle scattering tensor tomography
M. Liebi, M. Georgiadis, A. Menzel, P. Schneider, J. Kohlbrecher, O. Bunk and M. Guizar-Sicairos,
Nature 19. November 2015
DOI: http://dx.doi.org/10.1038/nature16056

Six-dimensional real and reciprocal space small-angle X-ray scattering tomography
F. Schaff, M. Bech, P. Zaslansky, C. Jud, M. Liebi, M. Guizar-Sicairos and F. Pfeiffer,
Nature 19. November 2015
DOI: http://dx.doi.org/10.1038/nature16060

Weitere Informationen:

http://psi.ch/KA1k Medienmitteilung auf der Seite des PSI mit weiteren Abbildungen
http://www.psi.ch/coherent-x-ray-scattering Forschungsgruppe für Kohärente Röntgenstreuung (Englisch)

Laura Hennemann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HZDR-Forscher entwickeln Tarnkappen-Technologie für leuchtende Nanopartikel
13.11.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ein Chip mit echten Blutgefäßen
13.11.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Im Focus: Datensicherheit: Aufbruch in die Quantentechnologie

Den Datenverkehr noch schneller und abhörsicher machen: Darauf zielt ein neues Verbundprojekt ab, an dem Physiker der Uni Würzburg beteiligt sind. Das Bundesforschungsministerium fördert das Projekt mit 14,8 Millionen Euro.

Je stärker die Digitalisierung voranschreitet, umso mehr gewinnen Datensicherheit und sichere Kommunikation an Bedeutung. Für diese Ziele ist die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

Profilierte Ausblicke auf die Mobilität von morgen

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

MagicMoney: Offline bezahlen – mit deinem Smartphone

13.11.2018 | Wirtschaft Finanzen

5G sichert Zukunft von Industrie 4.0 – DFKI mit der SmartFactoryKL auf der SPS IPC Drives

13.11.2018 | Messenachrichten

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics