Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur der „Betonkrankheit“ entschlüsselt

06.11.2015

Wenn Brücken, Staumauern und andere Bauwerke aus Beton nach einigen Jahrzehnten von dunklen Rissen durchzogen sind, dann ist AAR die Ursache: die Alkali-Aggregat-Reaktion. Umgangssprachlich auch Betonkrankheit oder gar Betonkrebs genannt, handelt es sich um eine chemische Reaktion zwischen im Beton vorhandenen Stoffen und von aussen eindringender Feuchtigkeit. Wie das Material, das im Zuge der AAR entsteht, auf der Ebene einzelner Atome aufgebaut ist, haben jetzt Forschende des Paul Scherrer Instituts PSI und der Empa entschlüsselt – und dabei eine bislang unbekannte kristalline Anordnung der Atome entdeckt.

Eine zersetzende Alterserscheinung von Beton haben Forschende am Paul Scherrer Institut PSI gemeinsam mit Kollegen des Materialforschungsinstituts Empa untersucht: Die sogenannte Alkali-Aggregat-Reaktion (AAR). Im Zuge der AAR entsteht ein Material, das mehr Raum einnimmt als der ursprüngliche Beton und letzteren im Laufe von Jahrzehnten langsam von innen heraus sprengt.


Die sogenannte Betonkrankheit: Nahaufnahme von Rissen in Beton, die aufgrund der Alkali-Aggregat-Reaktion (AAR) entstanden sind.

Foto: Empa/Andreas Leemann

Den genauen Aufbau dieses Materials haben die Forschenden nun ergründet. Sie konnten zeigen, dass hier die Atome sehr regelmässig angeordnet sind, es sich also um einen Kristall handelt. Auch den Aufbau dieses Kristalls haben sie entschlüsselt: Es ist eine sogenannte Silizium-Schichtenstruktur, die in dieser Form noch nie zuvor beobachtet wurde. Diese Erkenntnis verdanken die Forschenden Messungen an der Synchrotron Lichtquelle Schweiz SLS am PSI. Die Forschungsergebnisse wiederum könnten helfen, zukünftig langlebigeren Beton zu entwickeln.

Weltweites Problem

Die AAR ist eine chemische Reaktion, die weltweit Betonbauten unter freiem Himmel betrifft. Sie geschieht, wenn Beton Wasser beziehungsweise Feuchtigkeit ausgesetzt ist. Beispielsweise sind in der Schweiz zahlreiche Brücken und bis zu 20 Prozent der Staumauern von AAR betroffen.

Bei der AAR sind die Grundzutaten des Betons selbst das Problem: Zement – der Hauptbestandteil von Beton – enthält Alkalimetalle wie Natrium und Kalium. In den Beton eindringende Feuchtigkeit – beispielsweise durch Regen – wird dadurch alkalisch.

Die zweite Hauptzutat von Beton sind Sand und Kies. Diese wiederum bestehen aus mineralischen Gesteinen, beispielsweise Quarz oder Feldspat. Chemisch betrachtet handelt es sich bei diesen Mineralien um sogenannte Silikate.

Mit diesen Silikaten reagiert nun das alkalische Wasser und führt zur Bildung von sogenanntem Alkali-Kalzium-Silikat-Hydrat. Dieses wiederum kann Feuchtigkeit aufnehmen. Dadurch allerdings dehnt es sich aus und sprengt mit der Zeit den Beton von innen. Dieser gesamte Prozess ist die Alkali-Aggregat-Reaktion AAR.

Da die AAR sehr langsam geschieht, entstehen zunächst winzige Risse, die mit blossem Auge nicht sichtbar sind. Im Laufe von drei, vier Jahrzehnten wachsen die Risse jedoch auf beträchtliche Breite und bedrohen schliesslich die Dauerhaftigkeit des gesamten Beton-Bauwerks.

"Die meisten Bauwerke, die heute an AAR leiden, wurden zwischen den 1960er und 1980er Jahren erbaut", erklärt Erich Wieland, Gruppenleiter Zementsysteme am PSI. "Auf das Problem der AAR ist die Forschungsgemeinde in Europa erst in den 70er Jahren aufmerksam geworden."

Ein neuer Kristall

Auch wenn die chemischen Vorgänge der AAR schon lange bekannt sind – die physikalische Struktur des im Zuge der AAR entstehenden Alkali-Kalzium-Silikat-Hydrats hatte bisher noch niemand identifiziert. Diese Wissenslücke konnten die Forschenden des PSI und der Empa nun schliessen.

Dafür untersuchten sie die Substanz einer 1969 erbauten Schweizer Brücke, die stark von AAR betroffen ist. Forschende der Empa hatten dieser Brücke eine Materialprobe entnommen. Ein schmales Stück davon wurde so lange heruntergeschliffen, bis eine hauchdünne Probe von nur 0,02 Millimeter Dicke übrig blieb. Diese Probe liess sich an der Synchrotron Lichtquelle Schweiz SLS mit einem extrem schmalen Röntgenstrahl durchleuchten, der 50 Mal dünner ist als ein menschliches Haar. Mittels sogenannter Diffraktionsmessungen und einer aufwendigen Datenanalyse konnten die PSI-Forschenden schliesslich die Kristallstruktur des Materials punktgenau bestimmen.

Es zeigte sich, dass das Alkali-Kalzium-Silikat-Hydrat eine bisher nie dokumentierte Silizium-Schichten-Kristallstruktur aufweist. "Normalerweise darf derjenige, der einen noch nicht katalogisierten Kristall entdeckt, diesem einen Namen geben", erklärt Rainer Dähn, Erstautor der Studie. "Allerdings muss es sich um einen in der Natur gefundenen Kristall handeln. Daher sind wir in diesem Fall nicht zu der Ehre gekommen", so der Forscher schmunzelnd.

Die Idee zu der aktuellen Studie hatte Mitautor Andreas Leemann, Gruppenleiter Betontechnologie an der Empa. Das Wissen über die Untersuchungsmethode per Röntgenstrahlen lieferten die Forschenden des PSI.

"Es gibt prinzipiell die Möglichkeit, dem Beton organische Stoffe beizumengen, die den Spannungsaufbau reduzieren können", erklärt Materialwissenschaftler Leemann. "Unsere neuen Ergebnisse stellen diese Überlegungen auf ein wissenschaftliches Fundament und könnten die Basis für neue Materialentwicklungen sein."

Text: Paul Scherrer Institut/Laura Hennemann


Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 380 Mio.


Kontakt / Ansprechpartner

Dr. Rainer Dähn, Forschungsgruppe für Ton-Sorptionsmechanismen, Paul Scherrer Institut,
Telefon: +41 56 310 21 75, E-Mail: rainer.daehn@psi.ch [Deutsch, Englisch]

Dr. Erich Wieland, Forschungsgruppe für Zementsysteme, Paul Scherrer Institut,
Telefon: +41 56 310 22 91, E-Mail: erich.wieland@psi.ch [Deutsch, Englisch]

Dr. Andreas Leemann, Abteilung Beton und Bauchemie, Empa,
Telefon: +41 58 765 44 89, E-Mail: andreas.leemann@empa.ch [Deutsch, Englisch]

Originalveröffentlichung

Application of micro X-ray diffraction to investigate the reaction products formed by the alkali-silica reaction in concrete structures
R. Dähn, A. Arakcheeva, Ph. Schaub, P. Pattison, G. Chapuis, D. Grolimund, E. Wieland and A. Leemann
Cement and Concrete Research 14. Oktober 2015 (online)
DOI: 10.1016/j.cemconres.2015.07.012 http://www.sciencedirect.com/science/article/pii/S0008884615002094

Weitere Informationen:

http://www.psi.ch/media/struktur-der-betonkrankheit-entschluesselt Darstellung der Medienmitteilung auf der Seite des PSI mit weiteren Abbildungen.

Laura Hennemann | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Beton Empa Feuchtigkeit Lichtquelle PSI Probe Synchrotron

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Bestäubung funktioniert in Städten besser als auf dem Land
29.01.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Notre Dame in Paris: 3D-Daten für den Wiederaufbau
13.01.2020 | Otto-Friedrich-Universität Bamberg

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Im Focus: Charakterisierung von thermischen Schnittstellen für modulare Satelliten

Das Fraunhofer IFAM in Dresden hat ein neues Projekt zur thermischen Charakterisierung von Kupfer/CNT basierten Scheiben für den Einsatz in thermalen Schnittstellen von modularen Satelliten gestartet. Gefördert wird das Projekt „ThermTEST“ für 18 Monate vom Bundesministerium für Wirtschaft und Energie.

Zwischen den Einzelmodulen von modularen Satelliten werden zur Kopplung eine Vielzahl von Schnittstellen benötigt, die nach ihrer Funktion eingeteilt werden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

10.000-mal schnellere Berechnungen möglich

20.02.2020 | Physik Astronomie

Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien

20.02.2020 | Biowissenschaften Chemie

Krebsstammzellen nachverfolgen

20.02.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics