Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur der „Betonkrankheit“ entschlüsselt

06.11.2015

Wenn Brücken, Staumauern und andere Bauwerke aus Beton nach einigen Jahrzehnten von dunklen Rissen durchzogen sind, dann ist AAR die Ursache: die Alkali-Aggregat-Reaktion. Umgangssprachlich auch Betonkrankheit oder gar Betonkrebs genannt, handelt es sich um eine chemische Reaktion zwischen im Beton vorhandenen Stoffen und von aussen eindringender Feuchtigkeit. Wie das Material, das im Zuge der AAR entsteht, auf der Ebene einzelner Atome aufgebaut ist, haben jetzt Forschende des Paul Scherrer Instituts PSI und der Empa entschlüsselt – und dabei eine bislang unbekannte kristalline Anordnung der Atome entdeckt.

Eine zersetzende Alterserscheinung von Beton haben Forschende am Paul Scherrer Institut PSI gemeinsam mit Kollegen des Materialforschungsinstituts Empa untersucht: Die sogenannte Alkali-Aggregat-Reaktion (AAR). Im Zuge der AAR entsteht ein Material, das mehr Raum einnimmt als der ursprüngliche Beton und letzteren im Laufe von Jahrzehnten langsam von innen heraus sprengt.


Die sogenannte Betonkrankheit: Nahaufnahme von Rissen in Beton, die aufgrund der Alkali-Aggregat-Reaktion (AAR) entstanden sind.

Foto: Empa/Andreas Leemann

Den genauen Aufbau dieses Materials haben die Forschenden nun ergründet. Sie konnten zeigen, dass hier die Atome sehr regelmässig angeordnet sind, es sich also um einen Kristall handelt. Auch den Aufbau dieses Kristalls haben sie entschlüsselt: Es ist eine sogenannte Silizium-Schichtenstruktur, die in dieser Form noch nie zuvor beobachtet wurde. Diese Erkenntnis verdanken die Forschenden Messungen an der Synchrotron Lichtquelle Schweiz SLS am PSI. Die Forschungsergebnisse wiederum könnten helfen, zukünftig langlebigeren Beton zu entwickeln.

Weltweites Problem

Die AAR ist eine chemische Reaktion, die weltweit Betonbauten unter freiem Himmel betrifft. Sie geschieht, wenn Beton Wasser beziehungsweise Feuchtigkeit ausgesetzt ist. Beispielsweise sind in der Schweiz zahlreiche Brücken und bis zu 20 Prozent der Staumauern von AAR betroffen.

Bei der AAR sind die Grundzutaten des Betons selbst das Problem: Zement – der Hauptbestandteil von Beton – enthält Alkalimetalle wie Natrium und Kalium. In den Beton eindringende Feuchtigkeit – beispielsweise durch Regen – wird dadurch alkalisch.

Die zweite Hauptzutat von Beton sind Sand und Kies. Diese wiederum bestehen aus mineralischen Gesteinen, beispielsweise Quarz oder Feldspat. Chemisch betrachtet handelt es sich bei diesen Mineralien um sogenannte Silikate.

Mit diesen Silikaten reagiert nun das alkalische Wasser und führt zur Bildung von sogenanntem Alkali-Kalzium-Silikat-Hydrat. Dieses wiederum kann Feuchtigkeit aufnehmen. Dadurch allerdings dehnt es sich aus und sprengt mit der Zeit den Beton von innen. Dieser gesamte Prozess ist die Alkali-Aggregat-Reaktion AAR.

Da die AAR sehr langsam geschieht, entstehen zunächst winzige Risse, die mit blossem Auge nicht sichtbar sind. Im Laufe von drei, vier Jahrzehnten wachsen die Risse jedoch auf beträchtliche Breite und bedrohen schliesslich die Dauerhaftigkeit des gesamten Beton-Bauwerks.

"Die meisten Bauwerke, die heute an AAR leiden, wurden zwischen den 1960er und 1980er Jahren erbaut", erklärt Erich Wieland, Gruppenleiter Zementsysteme am PSI. "Auf das Problem der AAR ist die Forschungsgemeinde in Europa erst in den 70er Jahren aufmerksam geworden."

Ein neuer Kristall

Auch wenn die chemischen Vorgänge der AAR schon lange bekannt sind – die physikalische Struktur des im Zuge der AAR entstehenden Alkali-Kalzium-Silikat-Hydrats hatte bisher noch niemand identifiziert. Diese Wissenslücke konnten die Forschenden des PSI und der Empa nun schliessen.

Dafür untersuchten sie die Substanz einer 1969 erbauten Schweizer Brücke, die stark von AAR betroffen ist. Forschende der Empa hatten dieser Brücke eine Materialprobe entnommen. Ein schmales Stück davon wurde so lange heruntergeschliffen, bis eine hauchdünne Probe von nur 0,02 Millimeter Dicke übrig blieb. Diese Probe liess sich an der Synchrotron Lichtquelle Schweiz SLS mit einem extrem schmalen Röntgenstrahl durchleuchten, der 50 Mal dünner ist als ein menschliches Haar. Mittels sogenannter Diffraktionsmessungen und einer aufwendigen Datenanalyse konnten die PSI-Forschenden schliesslich die Kristallstruktur des Materials punktgenau bestimmen.

Es zeigte sich, dass das Alkali-Kalzium-Silikat-Hydrat eine bisher nie dokumentierte Silizium-Schichten-Kristallstruktur aufweist. "Normalerweise darf derjenige, der einen noch nicht katalogisierten Kristall entdeckt, diesem einen Namen geben", erklärt Rainer Dähn, Erstautor der Studie. "Allerdings muss es sich um einen in der Natur gefundenen Kristall handeln. Daher sind wir in diesem Fall nicht zu der Ehre gekommen", so der Forscher schmunzelnd.

Die Idee zu der aktuellen Studie hatte Mitautor Andreas Leemann, Gruppenleiter Betontechnologie an der Empa. Das Wissen über die Untersuchungsmethode per Röntgenstrahlen lieferten die Forschenden des PSI.

"Es gibt prinzipiell die Möglichkeit, dem Beton organische Stoffe beizumengen, die den Spannungsaufbau reduzieren können", erklärt Materialwissenschaftler Leemann. "Unsere neuen Ergebnisse stellen diese Überlegungen auf ein wissenschaftliches Fundament und könnten die Basis für neue Materialentwicklungen sein."

Text: Paul Scherrer Institut/Laura Hennemann


Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 380 Mio.


Kontakt / Ansprechpartner

Dr. Rainer Dähn, Forschungsgruppe für Ton-Sorptionsmechanismen, Paul Scherrer Institut,
Telefon: +41 56 310 21 75, E-Mail: rainer.daehn@psi.ch [Deutsch, Englisch]

Dr. Erich Wieland, Forschungsgruppe für Zementsysteme, Paul Scherrer Institut,
Telefon: +41 56 310 22 91, E-Mail: erich.wieland@psi.ch [Deutsch, Englisch]

Dr. Andreas Leemann, Abteilung Beton und Bauchemie, Empa,
Telefon: +41 58 765 44 89, E-Mail: andreas.leemann@empa.ch [Deutsch, Englisch]

Originalveröffentlichung

Application of micro X-ray diffraction to investigate the reaction products formed by the alkali-silica reaction in concrete structures
R. Dähn, A. Arakcheeva, Ph. Schaub, P. Pattison, G. Chapuis, D. Grolimund, E. Wieland and A. Leemann
Cement and Concrete Research 14. Oktober 2015 (online)
DOI: 10.1016/j.cemconres.2015.07.012 http://www.sciencedirect.com/science/article/pii/S0008884615002094

Weitere Informationen:

http://www.psi.ch/media/struktur-der-betonkrankheit-entschluesselt Darstellung der Medienmitteilung auf der Seite des PSI mit weiteren Abbildungen.

Laura Hennemann | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Beton Empa Feuchtigkeit Lichtquelle PSI Probe Synchrotron

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Studentische Modelle: 5G-Sendemasten aus Holz für ein ästhetisches und nachhaltiges Stadtbild
20.05.2019 | Technische Universität Kaiserslautern

nachricht Natürlich belüftete Doppelfassaden besser planen
20.05.2019 | HafenCity Universität Hamburg

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Im Focus: Impfen über die Haut – Gezielter Wirkstofftransport mit Hilfe von Nanopartikeln

Forschenden am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam ist es gelungen Nanopartikel so weiterzuentwickeln, dass sie von speziellen Zellen der menschlichen Haut aufgenommen werden können. Diese sogenannten Langerhans Zellen koordinieren die Immunantwort und alarmieren den Körper, wenn Erreger oder Tumore im Organismus auftreten. Mit dieser neuen Technologieplattform könnten nun gezielt Wirkstoffe, zum Beispiel Impfstoffe oder Medikamente, in Langerhans Zellen eingebracht werden, um eine kontrollierte Immunantwort zu erreichen.

Die Haut ist ein besonders attraktiver Ort für die Applikation vieler Medikamente, die das Immunsystem beeinflussen. Die geeigneten Zielzellen liegen in der...

Im Focus: Chaperone halten das Tumorsuppressor-Protein p53 in Schach: Komplexer Regelkreis schützt vor Krebs

Über Leben und Tod einer Zelle entscheidet das Anti-Tumor-Protein p53: Erkennt es Schäden im Erbgut, treibt es die Zelle in den Selbstmord. Eine neue Forschungsarbeit an der Technischen Universität München (TUM) zeigt, dass diese körpereigene Krebsabwehr nur funktioniert, wenn bestimmte Proteine, die Chaperone, dies zulassen.

Eine Krebstherapie ohne Nebenwirkungen, die gezielt nur Tumorzellen angreift – noch können Ärzte und Patienten davon nur träumen. Dabei hat die Natur ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

Jubiläumskongress zur Radiologie der Zukunft

22.05.2019 | Veranstaltungen

Wissensparcour bei der time4you gestartet

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Geometrie eines Elektrons erstmals bestimmt

23.05.2019 | Physik Astronomie

Galaxien als „kosmische Kochtöpfe“

23.05.2019 | Physik Astronomie

Auflösen von Proteinstau am Eingang von Mitochondrien

23.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics