Hornmoose: Zelluläre Strukturen mehrfach erfunden

Anders als vermutet, sind diese Strukturen keine evolutionären Relikte – sondern wurden mehrfach neu erfunden.

Hornmoose sind von allen Moosen am nächsten mit Gefäßpflanzen verwandt. In ihren Plastiden – also in Zellorganellen, die für die Photosynthese benötigt werden – haben sie auffällige lichtdichte Strukturen, sogenannte Pyrenoide. Die Pyrenoide bestehen aus Rubisco, einem Schlüsselenzym der Photosynthese. Ohne Rubisco könnten Pflanzen kein CO2 aufnehmen. Daher gingen Wissenschaftler bisher davon aus, dass Pyrenoide bei der Photosynthese eine besondere Rolle spielen und insbesondere dann von Vorteil sind, wenn der CO2-Gehalt in der Atmosphäre gering ist.

„Pyrenoide gibt es außer bei Hornmoosen nur noch bei einigen Algen, nicht bei anderen Landpflanzen. Daher hielt man sie für eine Art evolutionäres Relikt aus Zeiten, als die ersten Pflanzen vom Meer aus das Land eroberten“, sagt Susanne Renner, Biologin an der LMU und Direktorin des Botanischen Gartens in München, die nun gemeinsam mit dem panamaischen Postdoktoranden Juan Carlos Villareal den Stammbaum der Hornmoose und die Evolution der Pyrenoide genauer unter die Lupe nahm.

Kein Vorteil bei CO2-Mangel

Dabei zeigte sich, dass verschiedene Arten von Hornmoosen mindestens sechs Mal unabhängig voneinander Pyrenoide „erfanden“ – und dass diese Strukturen dann auch mindestens genauso viele Male wieder verloren gingen. Pyrenoide sind also keinesfalls ein von algenartigen Vorfahren ererbtes Merkmal.

Auch die These, dass Pyrenoide bei niedrigen CO2-Konzentrationen einen Vorteil bieten, konnte Renner nicht bestätigen: „Wir haben den Stammbaum der Hornmoose mit einer sogenannten molekularen Uhr datiert und dann mit der CO2-Konzentrationskurve der letzten 100 Millionen Jahre verglichen. Dabei zeigte sich kein Zusammenhang zwischen Entstehen und Verlust der Pyrenoide und der CO2-Konzentration der Atmosphäre.“

Aufgrund dieser Ergebnisse schließt die Wissenschaftlerin, dass Pyrenoide andere Funktionen haben müssen – und wahrscheinlich den Organismus auch etwas kosten, „sonst würden sie ja nicht so häufig wieder verloren gehen“, vermutet Renner.

(PNAS, 30. Oktober 2012) göd

Publikation:
Hornwort pyrenoids, a carbon-concentrating mechanism, evolved and were lost at least five times during the last 100 million years
Juan Carlos Villarreal and Susanne S. Renner
PNAS, 30. Oktober 2012
doi: 10.1073/pnas.1213498109
Kontakt
Professor Susanne Renner
Systematische Botanik und Mykologie
Tel.: 089 / 17861-257
Fax: 089 / 2180 – 172638
E-Mail: renner@lrz.uni-muenchen.de

Media Contact

Luise Dirscherl Uni München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer