Proteomik identifiziert die Reparatur-Werkzeugkiste des Zellkerns

Wenn die DNA-Replikationsmaschinerie auf Schäden trifft, werden viele DNA-Reparaturfaktoren hinzugezogen, um die Schäden zu beheben.Identifikation der beteiligten Proteine mittels Massenspektrometrie Markus Raeschle / MPI für Biochemie

Die DNA-Reparatur umfasst viele zum Teil noch unbekannte Faktoren, welche die DNA-Schäden in mehreren Schritten entfernen. Wissenschaftlern vom Max-Planck-Institut (MPI) für Biochemie in Martinsried bei München ist es jetzt zum ersten Mal gelungen, einen spezifischen DNA-Reparaturprozess umfassend zu beobachten und mehrere neue Faktoren zu identifizieren.

Pro Sekunde finden im menschlichen Körper mehrere Millionen Zellteilungen statt. Bei jeder einzelnen Teilung müssen 3,3 Milliarden DNA-Bausteine von einem Replikationsapparat kopiert und anschließend fehlerfrei auf die entstehenden Tochterzellen aufgeteilt werden.

Was passiert jedoch, wenn die DNA-Vorlage beschädigt ist? Um dieser Frage nachzugehen, analysierten Wissenschaftler um Professor Matthias Mann am Max-Planck-Institut für Biochemie in Martinsried, welche DNA Reparaturfaktoren hinzugezogen werden, wenn der Replikationsapparat auf DNA-Schäden stößt.

Hierfür isolierten sie zu verschiedenen Zeitpunkten während des Replikations- und Reparaturprozesses DNA und analysierten die darauf gebundenen Proteine mit Hilfe von Massenspektrometrie-basierter Proteomik. Im Gegensatz zu herkömmlichen Methoden, welche sich auf die Quantifizierung von wenigen bekannten Proteinen beschränken, können in proteomischen Analysen die präzisen Mengen von Tausenden von Proteinen gleichzeitig bestimmt werden.

Die Arbeit stellt so die erste umfassende Analyse eines komplexen DNA Reparaturweges dar und zeigt, dass dem Replikationsapparat über 90 zusätzliche Proteine zu Hilfe eilen, um die DNA-Schäden zu überwinden. Neben bereits bekannten Proteinen konnten auch unbekannte Reparaturhelfer identifiziert werden. Welche genaue Aufgabe sie jeweils im DNA-Reparaturprozess übernehmen, wollen die Forscher zusammen mit dem Team von Prof. Mailand vom Zentrum für Proteinforschung in Kopenhagen untersuchen.

„Viele dieser DNA-Reparaturfaktoren sind für die fehlerfreie Weitergabe der genetischen Informationen an die Tochterzellen unerlässlich“, erklärt Markus Räschle, Erstautor der Studie. „Defekte in den Reparaturfaktoren können Krebs begünstigen oder gar verursachen.“ Vielleicht könnten Gendefekte in den neu identifizierten Faktoren einige der noch ungeklärten Krebsveranlagungen erklären.

Die neuen Ergebnisse und Methoden könnten aber auch dazu beitragen, die Therapie von spontanen Krebserkrankungen zu verbessern. Heute schon gehören DNA-modifizierenden Wirkstoffe zu den am häufigsten verwendeten Medikamenten in der Krebstherapie. Sie wirken besonders gut in sporadisch auftretenden Tumoren, welche Defekte in dem entsprechenden DNA Reparaturweg aufweisen. Gelingt es den Forschern die Analysemethode der Proteomik so weiterzuentwickeln, dass Ärzte sie auch in der Klinik verwenden können, würden sich ganz neue Möglichkeiten eröffnen.

„Die Untersuchung der Proteinprofile direkt im Tumorgewebe könnte Ärzte bei der Suche nach der wirksamsten Behandlungsmethode unterstützen“, hofft Matthias Mann, Direktor am MPI für Biochemie. „So könnten sie die richtige Dosierung und die optimale Medikamentenklasse finden, was letztendlich auch eine schonendere und effektivere Behandlung verspricht.“ Die Ergebnisse wurden jetzt im Fachjournal Science veröffentlicht.

Originalpublikation:
M. Räschle, G. Smeenk, R.K. Hansen, T. Temu, Y. Oka, M.Y. Hein, N. Nagaraj, D.T. Long, J.C. Walter, K. Hofmann, Z. Storchova, J. Cox, S. Bekker-Jensen, N. Mailand, M. Mann: Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science, May 1, 2015
DOI: 10.1126/science.1253671

http://Vollständige Pressemitteilung – http://www.biochem.mpg.de/5002169/050_mann_dnareparatur
http://Weitere Texte über die Forschungsarbeiten von Matthias Mann – http://www.biochem.mpg.de/news/ueber_das_institut/forschungsbereiche/zellbiologi…
http://Webseite der Forschungsabteilung „Proteomics und Signaltransduktion“ (Matthias Mann) – www.biochem.mpg.de/mann

Media Contact

Anja Konschak Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer