Nierenkrankheit genetisch entschlüsselt

Auf einem einzigen Sequenzier-Chip lässt sich das gesamte Genom eines Menschen analysieren.
(c) David Ausserhofer, Max Delbrück Center

Bartter-Syndrom Typ 3 geht auf mehrere Strukturvarianten im Genom zurück. Mithilfe der „Long-read-Sequenzierung“ konnte Janine Altmüller und ihr Team vom Max Delbrück Center, BIH und der Uniklinik Köln die seltene Krankheit genauer analysieren. Die Ergebnisse stellen sie in „Genome Medicine“ vor.

Als die drei Kinder einer aus Syrien geflohenen Familie zum ersten Mal in der Sprechstunde von Dr. Bodo Beck an der Universitätsklinik in Köln saßen, war der Humangenetiker überrascht: Das Ergebnis seiner Genanalyse diagnostizierte ein Bartter-Syndrom Typ 3. Doch noch nie zuvor hatte er bei Patient*innen mit dieser seltenen Erkrankung so schwere Gelenkveränderungen gesehen.

Die Nierenkrankheit ist erblich – den Betroffenen fehlt das Gen CLCNKB, das für einen bestimmten Chloridkanal verantwortlich ist. Der Elektrolyt-Haushalt gerät aus dem Gleichgewicht, weil die Nieren wichtige Nährstoffe und Salze vom Urin während des Filterprozesses nicht zurück ins Blut aufnehmen können.

Neben dem Fehlen des CLCNKB-Gens vermutete Beck möglicherweise ausgedehntere Deletionen, also Bereiche, die komplett aus dem Genom gelöscht wurden und, die das schwere Krankheitsbild erklären würden. Um sich die krankmachenden Gene genauer anzuschauen, kontaktierte er Dr. Janine Altmüller, Leiterin der Genomik-Plattform des Max Delbrück Center und des Berlin Institute of Health in der Charité (BIH). Ihr Team, das am Berliner Institut für Medizinische Systembiologie des Max Delbrück Center (MDC-BIMSB) angesiedelt ist, arbeitet mit modernsten Sequenzierungsmethoden wie zum Beispiel „Long-read-Sequenzierungen“. Mit dieser Technologie analysierten sie nun Bereiche im Genom von Patient*innen, die zuvor im Dunkeln lagen. Die Ergebnisse haben sie im Journal „Genome Medicine“ veröffentlicht.

Eine Technologie für komplexe Strukturen

Herkömmliche „Short-read-Sequenzierungen“ erfassen DNA-Abschnitte in vielen kurzen Stücken, die anschließend wieder zusammengefügt werden müssen. Bei komplexen Genom-Strukturen stoßen diese in der Klinik üblichen Verfahren jedoch an ihre Grenzen – zum Beispiel wenn sich Sequenzen mehrfach innerhalb eines genetischen Abschnitts wiederholen wie es beim Bartter-Syndrom Typ 3 der Fall ist. Auch deshalb hatte niemand bislang die Feinstruktur der betroffenen Gene untersucht.

Die „Long-read-Sequenzierung“ kann dagegen in einem einzigen Durchgang viel längere Abschnitte der DNA lesen, etwa in der Größenordnung von Tausenden oder sogar Zehntausenden von Basenpaaren. Das riesige Puzzle mit den komplexen, sich wiederholenden Mustern hat somit größere Einzelteile und lässt sich leichter richtig zusammenfügen. Das Journal „Nature Methods“ machte sie deshalb zur Methode des Jahres 2022.

Altmüllers Team ist dank der Technik nun bei insgesamt 32 Patient*innen aus Nierenzentren in Köln, Marburg, Münster und London auf verschiedene genetische Varianten gestoßen, die CLCNKB und das benachbarte Gen CLCNKA betreffen und bislang unbekannt waren: „Bei einer der Strukturvarianten die wir gefunden haben, befindet sich ein kleiner Abschnitt des einen Gens in einer ähnlichen Position im benachbarten Gen“, sagt Altmüller. Dieses genetische Muster hat zunächst keine Auswirkungen auf die Niere und kam bei fast der Hälfte der gesunden Personen in der Studie vor. Bei den untersuchten Patient*innen war es aber nahezu immer vertreten.

Ein Hotspot für Mutationen

Die Forschenden vermuten, dass dieses Muster im Genom die Entstehung krankmachender Genvarianten begünstigt. „Die Strukturveränderung ist faszinierend, weil sie evolutionär gesehen ein Mutationshotspot ist“, sagt Altmüller. „Das Muster erhöht die Wahrscheinlichkeit, dass weitere Strukturvarianten im Laufe der menschlichen Evolution auftreten konnten.“ Tatsächlich fand das Team bei den Patient*innen acht verschiedene Deletionen in CLCNKB. Die seltene Nierenerkrankung gehe demnach nicht immer auf dieselben Strukturvarianten zurück, sondern es handele sich um unabhängige Ereignisse mit demselben genetischen Hintergrund, sagt Altmüller.

Bei der syrischen Familie entdeckten die Forschenden keine zusätzlichen Deletionen von Gensequenzen. Es blieb also bei der alleinigen Diagnose Bartter-Syndrom Typ 3. „In unserem Gesundheitssystem sehen wir solch ungewöhnlich schwere Krankheitsverläufe nur selten, weil Nierenschwäche meist deutlich früher erkannt und Spätfolgen, beispielsweise an den Gelenken, in der Regel verhindert werden können“, erklärt Beck.

Die Ergebnisse helfen den Wissenschaftler*innen, die Ursachen der Krankheit besser zu verstehen. Sie können in Zukunft dazu beitragen, bessere Diagnose- und Behandlungsmöglichkeiten zu entwickeln. Den ersten Schritt, die Technik in die Kliniken zu bringen, ist Altmüller bereits gegangen: „Demnächst startet eine Pilotstudie mit Partnern aus Berlin, Hannover, Tübingen und Aachen, in der wir Long-read-Sequenzierungen bei einer größeren Patient*innen-Kohorte mit ungelösten seltenen genetischen Erkrankungen anwenden wollen.“

Pressekontakte

Dr. Janine Altmüller
Gruppenleiterin, Technologie-Plattform „Genomik“
Max Delbrück Center
+49 (0)30 9406-1434
Janine.Altmueller@mdc-berlin.de

Christina Anders
Redakteurin, Kommunikation
Max Delbrück Center
+49 (0)30 9406-2118
christina.anders@mdc-berlin.de oder presse@mdc-berlin.de

Max Delbrück Center

Das Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (Max Delbrück Center) gehört zu den international führenden biomedizinischen Forschungszentren. Nobelpreisträger Max Delbrück, geboren in Berlin, war ein Begründer der Molekularbiologie. An den Standorten in Berlin-Buch und Mitte analysieren Forscher*innen aus rund 70 Ländern das System Mensch – die Grundlagen des Lebens von seinen kleinsten Bausteinen bis zu organ-übergreifenden Mechanismen. Wenn man versteht, was das dynamische Gleichgewicht in der Zelle, einem Organ oder im ganzen Körper steuert oder stört, kann man Krankheiten vorbeugen, sie früh diagnostizieren und mit passgenauen Therapien stoppen. Die Erkenntnisse der Grundlagenforschung sollen rasch Patient*innen zugutekommen. Das Max Delbrück Center fördert daher Ausgründungen und kooperiert in Netzwerken. Besonders eng sind die Partnerschaften mit der Charité – Universitätsmedizin Berlin im gemeinsamen Experimental and Clinical Research Center (ECRC) und dem Berlin Institute of Health (BIH) in der Charité sowie dem Deutschen Zentrum für Herz-Kreislauf-Forschung (DZHK). Am Max Delbrück Center arbeiten 1800 Menschen. Finanziert wird das 1992 gegründete Max Delbrück Center zu 90 Prozent vom Bund und zu 10 Prozent vom Land Berlin.

Berlin Institute of Health (BIH) in der Charité

Die Mission des Berlin Institute of Health (BIH) ist die medizinische Translation: Erkenntnisse aus der biomedizinischen Forschung werden in neue Ansätze zur personalisierten Vorhersage, Prävention, Diagnostik und Therapie übertragen, umgekehrt führen Beobachtungen im klinischen Alltag zu neuen Forschungsideen. Ziel ist es, einen relevanten medizinischen Nutzen für Patient*innen und Bürger*innen zu erreichen. Dazu etabliert das BIH als Translationsforschungsbereich in der Charité ein umfassendes translationales Ökosystem, setzt auf ein organübergreifendes Verständnis von Gesundheit und Krankheit und fördert einen translationalen Kulturwandel in der biomedizinischen Forschung. Das BIH wurde 2013 gegründet und wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung (BMBF) und zu zehn Prozent vom Land Berlin gefördert. Die Gründungsinstitutionen Charité – Universitätsmedizin Berlin und Max Delbrück Center waren bis 2020 eigenständige Gliedkörperschaften im BIH. Seit 2021 ist das BIH als so genannte dritte Säule in die Charité integriert, das Max Delbrück Center ist Privilegierter Partner des BIH.

Wissenschaftliche Ansprechpartner:

Dr. Janine Altmüller
Gruppenleiterin, Technologie-Plattform „Genomik“
Max Delbrück Center
+49 (0)30 9406-1434
Janine.Altmueller@mdc-berlin.de

Originalpublikation:

Nikolai Tschernoster et al. (2023): „Long-read sequencing identifies a common transposition haplotype predisposing for CLCNKB deletions“. Genome Medicine, DOI: 10.1186/s13073-023-01215-1
https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-023-01215-1

Weitere Informationen:

https://www.mdc-berlin.de/de/news/news/janine-altmueller-leitet-die-genomik-tech…
https://www.mdc-berlin.de/de/genomics
https://humangenetik.uk-koeln.de/forschung/ag-seltene-und-erbliche-nierenerkrank…

https://www.mdc-berlin.de/de/news/press/nierenkrankheit-genetisch-entschluesselt

Media Contact

Christina Anders Kommunikation
Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer