Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn der Stahl mit der Keramik: RUB-Ingenieur entwickelt neues Verfahren für extrem robuste Beschichtungen

14.12.2009
"Sintercladding": Neues Verfahren für extrem robuste Beschichtungen
Werkstoff-Innovationspreis 2009 an RUB-Maschinenbauer verliehen

Nur die besten Eigenschaften von Stahl und Keramik kombiniert der Bochumer Maschinenbauer Dr.-Ing. Sebastian Weber in einem neuen Verfahren, um extrem robuste Schichten für Bauteile herzustellen.

"Zäh wie Stahl und hart wie Keramik" sind die hoch verschleißbeständigen Beschichtungen, hergestellt aus Pulvern im so genannten Sintercladding. Das Ergebnis birgt ein enormes Sparpotenzial, fallen doch in Deutschland jedes Jahr Bauteile im Wert von 60 Milliarden Euro dem Verschleiß zum Opfer. Für seine Entwicklung erhielt Dr. Weber den mit 2.500 Euro dotierten Werkstoff-Innovationspreis 2009 von ThyssenKrupp.

Das Problem: dem Verschleiß standhalten

Ob Walzen, Pressen oder Prägewerkzeuge: Für zahlreiche Anwendungen im Maschinenbau werden Bauteile benötigt, die einer dauerhaften Belastung und dem Verschleiß so lange wie möglich standhalten müssen. Im Idealfall bzw. Modell bearbeitet ein hartes Werkzeug ein weicheres Werkstück oder Mahlgut - zum Beispiel Walzen, die mineralische Güter zerkleinern, oder Prägestempel zur Herstellung von Münzen. In der Praxis ist das bearbeitete Gut häufig nicht so weich - dann prägt die Münze den Stempel und das Mineral schmirgelt die Walze nach und nach dünner.

Vermählt: Stahl und Keramik

Selbst der härteste Stahl hat unter groben Verschleißbedingungen keine lange Lebensdauer. Wesentlich härter sind dagegen Keramiken. Die Lebensdauer einer Keramikwalze könnte weitaus höher liegen - leider "zerplatzt" dieser Lösungsansatz schon am ersten größeren Gesteinsbrocken. "Denn so hart die Keramik sein mag, sie ist auch außerordentlich spröde", sagt Sebastian Weber. Zum Einsatz etwa bei der Mineralzerkleinerung kommen daher schon länger Komposite aus Stahl und Keramik in einem aufwändigen und teuren Herstellungsprozess.

Etabliert, aber teuer: HIP

Beim heiß-isostatischen Pressen - HIP oder HIP-Verfahren genannt - vermischen sich ein beliebiges Stahl- und ein genauso beliebig wählbares Keramikpulver. Diese Pulvermischung wird anschließend in eine Kapsel gefüllt, die evakuiert und anschließend zugeschweißt wird. Bei einem Druck von etwa 1000 bar und einer Temperatur von 1150°C entsteht aus den beiden Pulvern ein zu 100 Prozent dichter Werkstoff, ohne dass dabei eine Komponente flüssig ist. Im Gegensatz zum HIP ist das klassische Schmelzen und Gießen von Stahl wesentlich kostengünstiger. Allerdings sind die Kombinationsmöglichkeiten von Keramik und Stahl beim Schmelzen stark eingeschränkt. "Und wie es der Zufall will, lassen sich die besonders verschleißbeständigen Kombinationen nicht durch Schmelzen herstellen", so Weber.

Die Lösung: Sintern mit Flüssigphase

Am Lehrstuhl für Werkstofftechnik (Inhaber: Prof. Dr.-Ing. Werner Theisen) hat Sebastian Weber nichts dem Zufall überlassen. Die einfache Idee: Auch beim HIP-Verfahren kommt es auf die richtige Mischung an - mit dem Ziel, vom Preis her näher am Schmelzen und von den erzeugten Kompositen her näher an den HIP-Werkstoffen zu liegen. Beim Sintercladding entfällt das isostatische Pressen bei hohem Druck. Da der Druck aber für die Verdichtung des Pulvers sorgt, braucht man einen Ersatz - eine flüssige Phase, indem man die Temperatur von vorher 1150°C auf etwa 1250°C erhöht. Dabei schmilzt ein Teil des Stahlpulvers auf, die Keramik jedoch nicht. Durch die engen Pulverzwischenräume entstehen große Kapillarkräfte, die die flüssige Phase gleichmäßig im Bauteil verteilen. Da die flüssige Phase das Pulvergemisch auch beweglicher macht, reichen die Kapillarkräfte aus, um das Bauteil vollständig zu verdichten. Erwärmt man die Pulvermischung nun gemeinsam mit einem massiven Grundkörper (Substrat), so lassen sich auf einfache Art und Weise dicke, verschleißbeständige Schichten herstellen.

Der Werkstoff-Innovationspreis

ThyssenKrupp ist ein langjähriger Kooperationspartner der Bochumer Fakultät für Maschinenbau. Das Unternehmen gehört zudem federführend dem Industriekonsortium an, das zusammen mit dem Land NRW das Materialforschungszentrum ICAMS der RUB finanziell unterstützt. Seit 2002 verleiht ThyssenKrupp den Werkstoff-Innovationspreis an Forscher der Ruhr-Universität, die in der Erforschung, Entwicklung und Anwendung von Werkstoffen Herausragendes leisten. Der diesjährige Preisträger Dr. Sebastian Weber ist derzeit Mitarbeiter einer gemeinsamen Forschergruppe der RUB und des Helmholtz-Zentrums Berlin. Den Preis erhielt er für seine Dissertation "Gezielte Ausnutzung des Stofftransports zur Herstellung neuartiger PM-Hartverbundwerkstoffe auf Eisenbasis".

Weitere Informationen
Dr.-Ing. Sebastian Weber, Tel. 0234/32-28229, E-Mail: weber@wtech.rub.de
Redaktion: Jens Wylkop

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Innovation macht 3D-Drucker für kleinere und mittlere Unternehmen rentabel
24.03.2017 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise