Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Robo-Würfel bauen sich selbst zusammen

07.10.2013
"M-Blocks" kommen ohne äußere bewegliche Teile aus

Forscher am Massachusetts Institute of Technology (MIT) haben Roboter-Würfel entwickelt, die sich selbstständig zu größeren Strukturen zusammenbauen können. Die wirkliche Besonderheit dabei ist der einfache Aufbau dieser Bausteine - denn die sogenannten "M-Blocks" haben keine beweglichen Teile. Dass sie dennoch aneinander entlang klettern oder in die Luft springen können, verdanken sie einem Schwungrad und Magneten im Inneren. Das hat einen Preis: Die Roboter können nicht jederzeit einfach stehenbleiben.


Würfelspiele: Basteln am Roboter-Design
(Foto: MIT, M. Scott Bauer)

Instabil zum Erfolg

Bisherige modulare Roboter-Systeme, die sich selbst in verschiedenen Konfigurationen zusammenbauen können, waren laut MIT-Postdoc Kyle Gilpin "statisch stabil", wenn sich Teile verschieben. "Man kann die Bewegung jederzeit anhalten, und sie bleiben, wo sie sind", erklärt er. Von eben diesem Prinzip hat sich das Team um die Robotik-Professorin Daniela Rus nun verabschiedet. Zeitweise fliegen einzelne Würfel praktisch frei durch die Luft. "Wir verlassen uns auf die Magnete, um sie nach der Landung auszurichten. Das ist einzigartig an diesem System", so Gilpin.

Dafür, dass sich ein M-Block überhaupt bewegt, sorgt ein Schwungrad mit bis zu 20.000 Umdrehungen pro Minute. Wird dieses abgebremst, überträgt es ein Drehmoment auf den Würfel, durch das sich dieser bewegt. Damit ein M-Block dabei sicher ans Ziel kommt, sind entlang seiner Kanten Zylindermagneten angebracht.

Diese können sich so drehen, dass zwei M-Blocks einander immer entgegengesetzte Magnetpole zuwenden und dadurch gut aneinander halten. Zudem sind die Kanten so geformt, dass die magnetische Verbindung gerade im instabilsten Augenblick während einer Kippbewegung besonders stark ist. Magneten an den Seiten wiederum halten ruhende Würfel zusammen.

Nützlich in allen Größen

Prinzipiell hoffen die Forscher, dass sich ihr modulares System dank des einfachen Aufbaus weiter miniaturisieren lässt - im Idealfall bis hin zu Mikro-Roboterschwärmen, die sich annähernd so frei selbst neu zusammensetzen können wie der Flüssigmetall-Androide T-1000 im Film "Terminator 2". Eben hier verspricht der neue Ansatz einen großen Vorteil. "Bei den meisten modularen Systemen kann sich ein Einzelmodul nicht allein fortbewegen", erklärt Gilpin. Ein M-Block dagegen kann selbständig zu seinem Schwarm zurückkehren - ein wenig wie abgetrennte Teile zum T-1000.

Auch ein verbessertes System mit Bausteinen der aktuellen Größe hat nach Ansicht des MIT-Teams großes Anwendungspotenzial. Beispielsweise könnte ein Schwarm Würfel in Notfällen beschädigte Brücken vorübergehend reparieren oder sich auf Baustellen in der jeweils erforderlichen Gerüstform aufbauen. Was genau die M-Blocks bereits können, werden die Forscher jedenfalls im Rahmen des IEEE/RSJ International Conference on Intelligent Robots and Systems http://iros2013.org näher vorstellen.

Thomas Pichler | pressetext.redaktion
Weitere Informationen:
http://www.mit.edu

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Mitarbeiter der Hochschule Ulm entwickeln neue Methode zur Desinfektion von Kontaktlinsen
17.07.2017 | Hochschule Ulm

nachricht Form aus dem Vakuum: Tiefziehen von Dünnglas eröffnet neue Anwendungsfelder
07.07.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops