Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Robo-Würfel bauen sich selbst zusammen

07.10.2013
"M-Blocks" kommen ohne äußere bewegliche Teile aus

Forscher am Massachusetts Institute of Technology (MIT) haben Roboter-Würfel entwickelt, die sich selbstständig zu größeren Strukturen zusammenbauen können. Die wirkliche Besonderheit dabei ist der einfache Aufbau dieser Bausteine - denn die sogenannten "M-Blocks" haben keine beweglichen Teile. Dass sie dennoch aneinander entlang klettern oder in die Luft springen können, verdanken sie einem Schwungrad und Magneten im Inneren. Das hat einen Preis: Die Roboter können nicht jederzeit einfach stehenbleiben.


Würfelspiele: Basteln am Roboter-Design
(Foto: MIT, M. Scott Bauer)

Instabil zum Erfolg

Bisherige modulare Roboter-Systeme, die sich selbst in verschiedenen Konfigurationen zusammenbauen können, waren laut MIT-Postdoc Kyle Gilpin "statisch stabil", wenn sich Teile verschieben. "Man kann die Bewegung jederzeit anhalten, und sie bleiben, wo sie sind", erklärt er. Von eben diesem Prinzip hat sich das Team um die Robotik-Professorin Daniela Rus nun verabschiedet. Zeitweise fliegen einzelne Würfel praktisch frei durch die Luft. "Wir verlassen uns auf die Magnete, um sie nach der Landung auszurichten. Das ist einzigartig an diesem System", so Gilpin.

Dafür, dass sich ein M-Block überhaupt bewegt, sorgt ein Schwungrad mit bis zu 20.000 Umdrehungen pro Minute. Wird dieses abgebremst, überträgt es ein Drehmoment auf den Würfel, durch das sich dieser bewegt. Damit ein M-Block dabei sicher ans Ziel kommt, sind entlang seiner Kanten Zylindermagneten angebracht.

Diese können sich so drehen, dass zwei M-Blocks einander immer entgegengesetzte Magnetpole zuwenden und dadurch gut aneinander halten. Zudem sind die Kanten so geformt, dass die magnetische Verbindung gerade im instabilsten Augenblick während einer Kippbewegung besonders stark ist. Magneten an den Seiten wiederum halten ruhende Würfel zusammen.

Nützlich in allen Größen

Prinzipiell hoffen die Forscher, dass sich ihr modulares System dank des einfachen Aufbaus weiter miniaturisieren lässt - im Idealfall bis hin zu Mikro-Roboterschwärmen, die sich annähernd so frei selbst neu zusammensetzen können wie der Flüssigmetall-Androide T-1000 im Film "Terminator 2". Eben hier verspricht der neue Ansatz einen großen Vorteil. "Bei den meisten modularen Systemen kann sich ein Einzelmodul nicht allein fortbewegen", erklärt Gilpin. Ein M-Block dagegen kann selbständig zu seinem Schwarm zurückkehren - ein wenig wie abgetrennte Teile zum T-1000.

Auch ein verbessertes System mit Bausteinen der aktuellen Größe hat nach Ansicht des MIT-Teams großes Anwendungspotenzial. Beispielsweise könnte ein Schwarm Würfel in Notfällen beschädigte Brücken vorübergehend reparieren oder sich auf Baustellen in der jeweils erforderlichen Gerüstform aufbauen. Was genau die M-Blocks bereits können, werden die Forscher jedenfalls im Rahmen des IEEE/RSJ International Conference on Intelligent Robots and Systems http://iros2013.org näher vorstellen.

Thomas Pichler | pressetext.redaktion
Weitere Informationen:
http://www.mit.edu

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Fraunhofer-Forscher entwickeln Messanlage für ZF-Werk in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Startschuss für EU-Projekt: Charakterisierung der Schweißraupe für adaptives Laserauftragschweißen
15.11.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie