Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

QUEST - Neue Methode zur Erzeugung von ultrakurzen Laserimpulsen

07.09.2011
Forschergruppe entwickelt eine einfache Alternative für Laboranwendungen

Für die Messung und Darstellung von ultraschnellen Prozessen, die sich in winzigen Zeitbereichen abspielen, zum Beispiel die Bewegung von Elektronen in Atomen oder Molekülen, werden Lichtimpulse verwendet, die eine kürzere Zeitdauer haben als der zu untersuchende Prozess selbst.


Erzeugung hoher Harmonischer Strahlung durch ein Weißlicht-Filament. Foto: Daniel Steingrube, Institut für Quantenoptik.

Dies ist nur mit einem Laser möglich, und die kürzesten heute realisierbaren Laserimpulse liegen im Attosekundenbereich (eine Attosekunde entspricht dem Trillionstel einer Sekunde 1as = 10-18s). Die Erzeugung solch kurzer Impulse war bisher nur in speziellen Laboren mit einem komplizierten und sehr aufwendigen Verfahren möglich. Einer Forschergruppe des Instituts für Quantenoptik an der Leibniz Universität Hannover ist es nun erstmals gelungen, dafür eine einfache und zuverlässige Methode zu entwickeln.

Die Wissenschaftlerinnen und Wissenschaftler des Exzellenzclusters QUEST (Centre for Quantum Engineering and Space-Time Research) haben in Zusammenarbeit mit Forschergruppen aus den USA und Frankreich gezeigt, dass es eine Alternative zu der bisher sehr aufwendigen Erzeugung der kurzen Laserpulse gibt. Bei der bisherigen Methode zur Erzeugung von Pulsen im Attosekundenbereich wird ein Laserimpuls über mehrere Schritte kompensiert, umgewandelt und so gefiltert, dass am Ende die benötigten Laserpulse im extrem-ultravioletten Spektralbereich (XUV) entstehen. Die Physiker aus Hannover bedienen sich einer anderen Vorgehensweise. „Unsere im Vergleich einfache Erzeugung isolierter Attosekundenpulse würde den Einsatz auch in nichtspezialisierten Laboren ermöglichen“, erklärt Juniorprofessor Dr. Milutin Kovacev, Physiker am Institut für Quantenoptik und Leiter der Arbeitsgruppe.

Sie produzieren dafür ein sogenanntes Laserfilament, bei dem ein intensiver Laserpuls in einer Gaszelle einen Plasmakanal bildet, in dem er über einige zehn Zentimeter Länge fokussiert bleibt. Ein solcher Plasmakanal ermöglicht den Prozess der Selbstphasenmodulation, also die Erzeugung zusätzlicher Lichtfrequenzen. Diese Lichtfrequenzen verbreitern das Spektrum des ursprünglichen Pulses und verkürzen gleichzeitig diesen in der Pulsdauer. Theoretische Simulationen zeigen, dass es eine zeitlich und räumlich komplexe Formung des sich ausbreitendes Pulses gibt, die lokal zu Impulsspitzen führen kann. Entlang der Ausbreitungsrichtung des Filaments entstehen somit lokal extrem kurze Pulse mit einer erhöhten Spitzenleistung. Bisher war es allerdings nicht möglich, eine solche Impulsspitze, die sich lokal an einem Ort im Filament bildet, direkt zu messen und für weitere Anwendungen zu nutzen.

Die Arbeitsgruppe aus Hannover hat nun eine Technik entwickelt, mit der sich die Impulsspitzen im Filament lokalisieren lassen. Ein abrupter Übergang in ein Vakuum am Ende der Gaszelle ermöglicht ein gezieltes Abschneiden des Filaments und somit eine lokale Abtastung der Impulse im Plasmakanal. Die lokale Abtastung der Impulsspitzen des Filaments erfolgt über den Prozess der Erzeugung hoher Harmonischer Strahlung, also der Vervielfachung der Frequenz der Grundfrequenz des Impulses. Es stellt sich heraus, dass diese Frequenzvervielfachung nur an zwei definierten Orten im Filament effizient gelingt. Schneidet man das Filament exakt dort ab - wo auch schon die Theorie den kürzesten Laserpuls vorhersagte - so bekommt man ein Frequenzkontinuum und kann isolierte Laserimpulse mit einer Pulsdauer von einigen hundert Attosekunden erzeugen.

Diese Technik stellt damit eine neuartige Quelle für Attosekundenpulse dar, die den Aufwand der Erzeugung drastisch reduziert. Innerhalb des Filaments finden sowohl die Pulskompression, die Dispersionskompensation als auch die Erzeugung hoher Harmonischer Strahlung automatisch statt, ohne weiteren Aufwand und Kosten. Ein weiterer Vorteil der neuen Methode ist die unkomplizierte Anwendung. „Wenn das System einmal läuft, sind keine weiteren Anpassungen notwendig. Es kann dadurch in vielen weiteren Gebieten der Wissenschaft genutzt werden“, so Kovacev weiter.

Der Fachartikel „High-order harmonic generation directly from a filament“ ist im New Journal of Physics, Ausgabe 13 (2011), doi: 10.1088/1367-2630/13/4/043022, erschienen.

Hinweis an die Redaktion:
Für weitere Informationen steht Ihnen Jun.-Prof. Dr. Milutin Kovacev vom Institut für Quantenoptik unter Telefon +49 511 762 5286 oder per E-Mail unter kovacev@iqo.uni-hannover.de gerne zur Verfügung.

Jessica Lumme | idw
Weitere Informationen:
http://www.uni-hannover.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Staubarmes Recycling wertvoller Rohstoffe aus Elektronikschrott
16.11.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Mikrostrukturen mit dem Laser ätzen
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie