Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

QUEST - Neue Methode zur Erzeugung von ultrakurzen Laserimpulsen

07.09.2011
Forschergruppe entwickelt eine einfache Alternative für Laboranwendungen

Für die Messung und Darstellung von ultraschnellen Prozessen, die sich in winzigen Zeitbereichen abspielen, zum Beispiel die Bewegung von Elektronen in Atomen oder Molekülen, werden Lichtimpulse verwendet, die eine kürzere Zeitdauer haben als der zu untersuchende Prozess selbst.


Erzeugung hoher Harmonischer Strahlung durch ein Weißlicht-Filament. Foto: Daniel Steingrube, Institut für Quantenoptik.

Dies ist nur mit einem Laser möglich, und die kürzesten heute realisierbaren Laserimpulse liegen im Attosekundenbereich (eine Attosekunde entspricht dem Trillionstel einer Sekunde 1as = 10-18s). Die Erzeugung solch kurzer Impulse war bisher nur in speziellen Laboren mit einem komplizierten und sehr aufwendigen Verfahren möglich. Einer Forschergruppe des Instituts für Quantenoptik an der Leibniz Universität Hannover ist es nun erstmals gelungen, dafür eine einfache und zuverlässige Methode zu entwickeln.

Die Wissenschaftlerinnen und Wissenschaftler des Exzellenzclusters QUEST (Centre for Quantum Engineering and Space-Time Research) haben in Zusammenarbeit mit Forschergruppen aus den USA und Frankreich gezeigt, dass es eine Alternative zu der bisher sehr aufwendigen Erzeugung der kurzen Laserpulse gibt. Bei der bisherigen Methode zur Erzeugung von Pulsen im Attosekundenbereich wird ein Laserimpuls über mehrere Schritte kompensiert, umgewandelt und so gefiltert, dass am Ende die benötigten Laserpulse im extrem-ultravioletten Spektralbereich (XUV) entstehen. Die Physiker aus Hannover bedienen sich einer anderen Vorgehensweise. „Unsere im Vergleich einfache Erzeugung isolierter Attosekundenpulse würde den Einsatz auch in nichtspezialisierten Laboren ermöglichen“, erklärt Juniorprofessor Dr. Milutin Kovacev, Physiker am Institut für Quantenoptik und Leiter der Arbeitsgruppe.

Sie produzieren dafür ein sogenanntes Laserfilament, bei dem ein intensiver Laserpuls in einer Gaszelle einen Plasmakanal bildet, in dem er über einige zehn Zentimeter Länge fokussiert bleibt. Ein solcher Plasmakanal ermöglicht den Prozess der Selbstphasenmodulation, also die Erzeugung zusätzlicher Lichtfrequenzen. Diese Lichtfrequenzen verbreitern das Spektrum des ursprünglichen Pulses und verkürzen gleichzeitig diesen in der Pulsdauer. Theoretische Simulationen zeigen, dass es eine zeitlich und räumlich komplexe Formung des sich ausbreitendes Pulses gibt, die lokal zu Impulsspitzen führen kann. Entlang der Ausbreitungsrichtung des Filaments entstehen somit lokal extrem kurze Pulse mit einer erhöhten Spitzenleistung. Bisher war es allerdings nicht möglich, eine solche Impulsspitze, die sich lokal an einem Ort im Filament bildet, direkt zu messen und für weitere Anwendungen zu nutzen.

Die Arbeitsgruppe aus Hannover hat nun eine Technik entwickelt, mit der sich die Impulsspitzen im Filament lokalisieren lassen. Ein abrupter Übergang in ein Vakuum am Ende der Gaszelle ermöglicht ein gezieltes Abschneiden des Filaments und somit eine lokale Abtastung der Impulse im Plasmakanal. Die lokale Abtastung der Impulsspitzen des Filaments erfolgt über den Prozess der Erzeugung hoher Harmonischer Strahlung, also der Vervielfachung der Frequenz der Grundfrequenz des Impulses. Es stellt sich heraus, dass diese Frequenzvervielfachung nur an zwei definierten Orten im Filament effizient gelingt. Schneidet man das Filament exakt dort ab - wo auch schon die Theorie den kürzesten Laserpuls vorhersagte - so bekommt man ein Frequenzkontinuum und kann isolierte Laserimpulse mit einer Pulsdauer von einigen hundert Attosekunden erzeugen.

Diese Technik stellt damit eine neuartige Quelle für Attosekundenpulse dar, die den Aufwand der Erzeugung drastisch reduziert. Innerhalb des Filaments finden sowohl die Pulskompression, die Dispersionskompensation als auch die Erzeugung hoher Harmonischer Strahlung automatisch statt, ohne weiteren Aufwand und Kosten. Ein weiterer Vorteil der neuen Methode ist die unkomplizierte Anwendung. „Wenn das System einmal läuft, sind keine weiteren Anpassungen notwendig. Es kann dadurch in vielen weiteren Gebieten der Wissenschaft genutzt werden“, so Kovacev weiter.

Der Fachartikel „High-order harmonic generation directly from a filament“ ist im New Journal of Physics, Ausgabe 13 (2011), doi: 10.1088/1367-2630/13/4/043022, erschienen.

Hinweis an die Redaktion:
Für weitere Informationen steht Ihnen Jun.-Prof. Dr. Milutin Kovacev vom Institut für Quantenoptik unter Telefon +49 511 762 5286 oder per E-Mail unter kovacev@iqo.uni-hannover.de gerne zur Verfügung.

Jessica Lumme | idw
Weitere Informationen:
http://www.uni-hannover.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neues Verfahren bringt komplex geformte Verbundwerkstoffe in die Serie
23.01.2017 | Evonik Industries AG

nachricht Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile
19.01.2017 | Fraunhofer IFAM

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie