Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

PID-Lampen geben uns Sicherheit

23.01.2013
Industrielle Prozesse, Lagerung von Chemikalien und Unfälle mit ausgelaufenen Chemikalien, Überwachung der Umwelt und persönliche Sicherheit sind Bereiche in denen Gasdetektoren häufig benötigt werden.

Dafür werden verschiedene Technologien eingesetzt, z. B. katalytische und elektrochemische Sensoren, Gaschromatografie, Flammen- oder Photoionisation und Ionenmobilitätsspektrometrie. Photoionisationsdetektoren (PID) bieten im Vergleich zu anderen Technologien vielleicht die beste Lösung:


Tabelle 1: Verschiedene Ionisationspotenziale für PID-Lampen


Photoionisationsdetektorlampen (PID-Lampen) von Heraeus messen flüchtige organische Verbindungen (VOCs) und garantieren sichere Arbeitsbedingungen.

Sie zeichnen sich durch hohe Reaktionsgeschwindigkeit, niedrige Nachweisschwellen und einfache Anwendbarkeit aus. Sie sind klein, tragbar und preiswert. Deshalb werden PIDs immer öfter zur ersten Wahl für Notfallteams, Industriewartung und öffentliche Sicherheit.

Einige typische Anwendungen sind:

 Leckanzeige
 Umkreisüberwachung
 Auslaufdetektion
 Sanierung
 Branduntersuchungen
 Überwachung von Schwellgrenzwerten für Dieselkraftstoff
 Persönliche Schutzausrüstung
 Dekontamination
 Nachweis illegaler Drogen bei Strafverfolgungen
Funktionsweise
Bei der Photoionisation wird eine spezielle UV-Lampe eingesetzt, die energiereiche Photonen ausstrahlt. Das Energieniveau der Photonen hängt von der Art des Gases in der Lampe ab und wird in Elektronenvolt (eV) gemessen.

Wenn das nachzuweisende Gas Photonen absorbiert, regen diese die Gasmoleküle an, was zum Verlust von Elektronen und somit der Ionisierung des Gases führt. Die ionisierten Gasmoleküle und Elektronen werden als Strom im Detektor gemessen. Die Stromstärke ist proportional zu der Anzahl der ionisierten Moleküle bzw. der Konzentration der ionisierten Gasverbindung. Dies erlaubt die quantitative Messung der Konzentration.

Allerdings ist die Photoionisation nicht selektiv bezüglich des Gases, da alle Moleküle mit Ionisationspotenzialen, die geringer als die Photonenenergie der Lampe sind, ionisiert werden. Die Methode ist zerstörungsfrei, so dass sie in Verbindung mit anderen nachgeschalteten Detektoren angewendet werden kann, um das Spektrum der Analysen zu erweitern.

Heraeus stellt PID-Lampen mit unterschiedlichen Photonenenergien her, so dass einige Verbindungen bei der Messung unterschieden werden können. Kürzlich wurde eine Lampe mit 10,0 eV auf den Markt gebracht, die sich speziell für die Messung von Benzol, Toluol, Ethylbenzol und Xylolen (BTEX-Verbindungen) eignet.

Anwendungen

Die Messung flüchtiger organischer Verbindungen (volatile organic compounds, VOCs) mit mobilen Photoionisationsdetektoren (PIDs) ermöglicht einen schnellen Nachweis mit hoher Empfindlichkeit. VOCs enthalten eine Vielzahl chemischer Verbindungen wie Toluol und Isobuten und kommen in vielen verschiedenen Industriebereichen vor. Die Expositionsgrenzwerte für diese Chemikalien können sehr gering sein, wenn die Exposition über einen langen Zeitraum stattfindet.

Der Kontakt mit diesen Stoffen kann eine schwerwiegende Gesundheitsgefahr darstellen, nicht nur bei der Herstellung, sondern auch während ihres Transports. Deshalb ist der Nachweis von VOCs bei der Bekämpfung von Chemieunfällen äußerst wichtig. Das Gleiche gilt auch für Branchen, in denen die Exposition von Arbeitern begrenzt werden muss.

Viele VOCs sind auch brennbar und können mit anderen Technologien wie katalytischen Sensoren nachgewiesen werden, wobei die betreffenden Nachweisschwellen typischerweise im Bereich von Teilen pro Million (ppm) oder Teilen pro Milliarde (ppb) liegen. Zum Beispiel liegt die untere Explosionsgrenze (UEG) von Toluol bei 1,2% bei einer zulässigen 8-Stunden-Exposition von 50 ppm. Die UEG ist 240 mal höher als der Grenzwert der Exposition während einer 8-Stunden-Schicht (1,2% = 12000 ppm).

Es wird somit deutlich, dass zur Gewährleistung der Sicherheit von Arbeitern und anderen Personen eine Technologie mit einer höheren Empfindlichkeit benötigt wird. Photoionisationsdetektoren (PIDs) nutzen die spezifischen physikalischen Eigenschaften von VOCs, und viele häufig vorkommende VOCs besitzen Ionisationspotenziale, die niedriger als 10,6 eV sind - ein Bereich, der für PID-UV-Lampen typisch ist (siehe Tabelle 1).

Allerdings ist die Spezifität von PID-Sensoren begrenzt. Unterschiedliche Lampenenergien von z. B. 11,7 eV, 10,6 eV, 10,0 eV und 9,6 eV bieten eine gewisse Selektivität der Detektion, dennoch weisen sie lediglich die Gegenwart von VOCs nach und nicht deren Art. Viele Geräte mit PID-Sensoren besitzen eingebaute Umrechnungsfaktoren. Wenn man weiß, welche flüchtige organische Verbindung gemessen wird, kann man die ppm-Konzentration direkt am Display ablesen.

Heraeus Noblelight, ein führender Hersteller von Speziallichtquellen, liefert Photoionisationsdetektorlampen (PID-Lampen), die in modernen Gasdetektoren verwendet werden. Mit neuester Elektronik und Software können PID-Lampen in stabilen und einfach zu verwendenden mobilen Gaswarngeräten eingesetzt werden, um verlässliche Nachweisergebnisse zu erhalten.

Entwickungs- und Herstellungskompetenz

Heraeus hat die Materialien zur Herstellung von PID-Lampen sorgfältig ausgewählt und eingehend getestet, um eine hohe Qualität zu gewährleisten. Die von Heraeus entwickelten Herstellungsverfahren garantieren beispiellose Leistung und konsistente Ergebnisse über die gesamte Lampenlebensdauer. Eine hohe Reinheit des Gasspektrums während der gesamten Lebensdauer der Lampen wird durch den Einsatz eines speziellen internen Reinigers erreicht.

Heraeus stellt ein breites Sortiment von PID-Lampen für Standard- und kundenspezifische Anforderungen sowohl als HF- als auch als DC-Versionen her. Für tragbare Detektoren sind HF-Versionen die beste Wahl, da sie kleiner sind und weniger Energie benötigen, während DC-Geräte für Laborinstrumente bevorzugt werden.

Der Edelmetall- und Technologiekonzern Heraeus mit Sitz in Hanau ist ein weltweit tätiges Familienunternehmen mit einer über 160-jährigen Tradition. Unsere Kompetenzfelder umfassen die Bereiche Edelmetalle, Materialien und Technologien, Sensoren, Biomaterialien und Medizinprodukte, Dentalprodukte sowie Quarzglas und Speziallichtquellen. Mit einem Produktumsatz von 4,8 Mrd. € und einem Edelmetallhandelsumsatz von 21,3 Mrd. € sowie weltweit über 13.300 Mitarbeitern in mehr als 120 Gesellschaften hat Heraeus eine führende Position auf seinen globalen Absatzmärkten.

Heraeus Noblelight GmbH mit Sitz in Hanau, mit Tochtergesellschaften in den USA, Großbritannien, Frankreich, China und Australien, gehört weltweit zu den Markt- und Technologieführern bei der Herstellung von Speziallichtquellen. Heraeus Noblelight wies 2011 einen Jahresumsatz von 103 Millionen € auf und beschäftigte weltweit 731 Mitarbeiter. Das Unternehmen entwickelt, fertigt und vertreibt Infrarot- und Ultraviolett-Strahler für Anwendungen in industrieller Produktion, Umweltschutz, Medizin und Kosmetik, Forschung und analytischen Messverfahren.

Kontakte für weitere Informationen:
Heraeus Noblelight Analytics Ltd.
Torsten Jenek
Nuffield Close
Cambridge CB4 1SS
Phone: +44 (1223) 424100
Fax: +44 (1223) 426338
E-Mail: hna-analytics@heraeus.com
Pressekontakt
Weitere Informationen und Bilder sind verfügbar:
Daniela Hornung
Heraeus Noblelight GmbH
Heraeusstrasse 12-14
63450 Hanau, Germany
Phone: +49 (0) 61 81 / 35-3137
E-Mail: daniela.hornung@heraeus.com

Daniela Hornung | Heraeus Noblelight GmbH
Weitere Informationen:
http://www.heraeus-noblelight.com

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Mitarbeiter der Hochschule Ulm entwickeln neue Methode zur Desinfektion von Kontaktlinsen
17.07.2017 | Hochschule Ulm

nachricht Form aus dem Vakuum: Tiefziehen von Dünnglas eröffnet neue Anwendungsfelder
07.07.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten