Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Organische Leuchten und Solarzellen aus dem Drucker

04.11.2013
Flimmernde Fassaden, gebogene Monitore, blinkende Kleidung, Leuchttapeten sowie flexible Solarzellen – und das alles zum Ausdrucken. Das ist keine Vision, sondern wird mit neuen Druckverfahren bald möglich sein.

Die Zeit sperriger Fernsehgeräte, kantiger Leuchtreklamen und Displays in Geschäften oder an Flughäfen läuft langsam ab. Denn bald heißt es zuhause: »Schatz, roll schon mal den Bildschirm aus, der Film fängt gleich an«. Und im öffentlichen Raum könnte fast jede beliebige Fläche zum Bildschirm werden.


An der Bushaltestelle der Zukunft informieren flexible OLEDs die Fahrgäste. Hergestellt werden sie einfach per Drucker.
© Fraunhofer IAP / Till Budde

»Das sind zwar noch Visionen, doch sie haben gute Chancen, Wirklichkeit zu werden«, sagt Dr. Armin Wedel, Bereichsleiter am Fraunhofer-Institut für Angewandte Polymerforschung IAP in Potsdam-Golm. Erste gebogene Bildschirme wurden auf der diesjährigen Internationalen Funkausstellung in Berlin präsentiert. Möglich machen das organische, lichtemittierende Dioden: OLEDs.

Wedel sieht neben Bildschirmen und Displays für die Unterhaltungselektronik zwei weitere Anwendungsfelder, in denen die Technik ihre Stärken ausspielen kann: Beleuchtungen aller Art und digitale Beschilderung. Damit gemeint sind Werbe- und Informationssysteme wie elektronische Plakate, Werbung, Großbildprojektionen, Verkehrsschilder und -leitsysteme.

Zusammen mit dem Anlagenbauer MBRAUN haben die Forscher eine Fertigungsanlage konstruiert, mit der sich OLEDs, aber auch organische Solarzellen im industrienahen Maßstab entwickeln lassen. Innovativ daran ist, dass sich jetzt OLEDs und Solarzellen aus einer Lösung leuchtender organischer beziehungsweise absorbierender Moleküle drucken lassen. So können sie einfach auf die Trägerfolie aufgedruckt werden. Üblicherweise geschieht dies bisher durch das Verdampfen von kleinen Molekülen im Hochvakuum, was den Prozess sehr teuer macht.

Größere Serien möglich

Mit verschiedenen Drucktechniken haben die Forscher Bauelemente bisher nur im Labormaßstab entworfen. Nun lassen sich größere Musterserien realisieren. Das ist vor allem vorteilhaft für die vom IAP anvisierten Anwendungen bei großen Leuchtflächen und Informationssystemen: Denn hier sind individuelle Lösungen und keine allzu großen Stückzahlen gefragt. »Nun sind wir in der Lage, mit vergleichsweise geringem Aufwand organische Bauelemente unter industrienahen Bedingungen zu realisieren. So lassen sich neue Ideen in kommerzielle Produkte überführen«, sagt Wedel.

Das Herzstück der Pilotanlage ist ein Roboter, der verschiedene Drucker wie einen Tintenstrahler ansteuern kann: Die organischen Leuchtdioden werden aus verschiedenen Ausgangsstoffen Schicht für Schicht von den Druckern auf das Trägermaterial aufgetragen. Das geschieht sehr homogen, wodurch eine makellose Leuchtschicht entsteht. »Auf diese Weise können wir hochpreisige Nischenmärkte bedienen. Ähnlich wie beim Digitaldruck, lässt sich die organische Elektronik individuell aufbringen«, erklärt Wedel.

Branchenexperten schätzen gedruckte OLEDs als zukunftsträchtigen Milliardenmarkt ein. »Deutschland und Europa haben sich auf die OLED-Beleuchtung fokussiert, weil hier große Unternehmen wie Osram und Philips beheimatet sind«, erläutert Wedel. »Die Produktionsanlage wird dabei helfen, Wettbewerbsvorteile in diesem Marktsegment zu sichern. Wir stärken dadurch die deutsche Forschungslandschaft und demonstrieren zudem die Leistungsfähigkeit des deutschen Anlagenbaus«, sagt Dr. Martin Reinelt, Geschäftsführer des Maschinenbauers MBRAUN in Garching.

OLEDs bieten im Vergleich zu herkömmlichen Display-Technologien viele Vorteile: Sie benötigen anders als Flüssigkristallbildschirme keine Hintergrundbeleuchtung und verbrauchen deswegen weniger Energie. Da die Dioden selbst farbiges Licht aussenden, sind Kontraste sowie die Farbdarstellung besser. Außerdem ermöglichen die selbstleuchtenden Displays einen Betrachtungswinkel von fast 180 Grad. Und weil sie kein Hintergrundlicht benötigen, können sie sehr dünn ausfallen. Das eröffnet neue Gestaltungsmöglichkeiten.

Damit sich OLEDs auf dem Markt durchsetzen, müssen noch einige Herausforderungen gemeistert werden. »Das Haupthemmnis sehe ich in der hohen Investitionssumme, die für eine Produktion nötig ist«, sagt Wedel. Er erwartet deshalb, dass OLEDs, zumindest bei der Beleuchtung, herkömmliche Leuchtmittel nicht ablösen, sondern ergänzen werden. Produktionstechnisch liefert er einen weniger zurückhaltenden Ausblick: »Meine Vision ist, eines Tages einfach die Tintenpatrone am Drucker auszutauschen, um sich selbst Leuchtelemente auszudrucken.«

Dr. rer. nat. Armin Wedel | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/November/organische-leuchten-und-solarzellen-aus-dem-drucker.html

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Dresdner Forscher drucken die Welt von Morgen
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen