Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lasermaterialbearbeitung: Der Kontur auf der Spur

12.05.2011
Am Fraunhofer-Institut für Lasertechnik ILT wurde ein System zur Prozessüberwachung entwickelt, das Ort und Geschwindigkeit des Laserstrahl- Bearbeitungspunktes auf der Oberfläche exakt vermessen kann. So lassen sich Abweichungen von der Soll-Kontur und von der Soll-Geschwindigkeit minimieren und der Energieeintrag kann stabilisiert werden.

Die Nutzung moderner Festkörperlaser hat in den letzten Jahren für eine deutliche Steigerung der Bearbeitungsgeschwindigkeiten in der Lasermaterialbearbeitung geführt. Ob mit Scanner oder mit Festoptik, hohe Geschwindigkeiten möglichst noch in verschiedenen Achsen gleichzeitig sind heute schon fast selbstverständlich.

Doch obwohl die Bewegung der Optik genau berechnet wird, kann die Position des Bearbeitungspunkts von der geplanten Kontur abweichen. Ein Prozessüberwachungssystem, das die Relativbewegung von Werkstück und Optik genau verfolgt, schafft hier Abhilfe. Beschleunigungsbedingte Abweichungen von der Soll-Kontur und der Soll-Geschwindigkeit lassen sich damit exakt vermessen und die NC-Steuerung kann entsprechend angepasst werden.

Forscher am Fraunhofer ILT in Aachen haben ein kamerabasiertes System entwickelt, das die Bewegungen des Werkstücks durch die optische Achse des Laserstrahls vor oder während der Bearbeitung analysiert. Dabei spielt es keine Rolle, ob eine Festoptik oder eine Scanneroptik benutzt wird – in beiden Fällen vermisst das System die Bewegung des Bearbeitungspunktes am Werkstück und kann so Abweichungen von der Sollkontur schon beim Einrichten oder während des Prozesses dokumentieren.

Das Prozessüberwachungssystem arbeitet mit Bildfolgefrequenzen von bis zu 10 kHz. In verschiedenen Anwendungen wurden so schon Konturen bei einer Bearbeitungsgeschwindigkeit von bis zu 10 m/min (Festoptik) und bis zu 15 m/s (Scanneroptik) vermessen. Die Abweichung gegenüber einem Referenzsystem war dabei kleiner als 3 cm/min. Die Auswertung der Messdaten erfolgt derzeit noch separat. Mit der gleichen Technologie kann (die technische Voraussetzung ist gegeben) auch eine Echtzeitvermessung erfolgen, die in der Genauigkeitsklasse jedoch noch nicht vollständig spezifiziert ist.

Durch den speziellen Aufbau des Systems gibt es kaum Einschränkungen in der Anwendung. Laserschneiden oder –schweißen, Löten, Bohren, Abtragen, Mikrofügen, SLM und Härten – in allen Fällen ist das System einsetzbar. Für Systemintegratoren und Endanwender gleichermaßen interessant sind die verschiedenen Modi: Einerseits kann das System dem Bearbeitungspunkt beim Einrichten folgen und so eine Korrektur der geplanten Kontur ermöglichen.

Andererseits erlaubt das System auch eine Prozesskontrolle während der Bearbeitung. Hier ermöglicht es nicht nur eine Korrektur der Bearbeitungskontur sondern auch eine Steuerung der Laserleistung, um bei verschiedenen Geschwindigkeiten des Laserspots einen gleichmäßigen Energieeintrag zu gewährleisten. Gerade bei der Bearbeitung dünner Materialien ist das ein kritischer Faktor. Somit können bestehende Prozesse optimiert und neue Prozesse ermöglicht werden.

Die Spezialisten am Fraunhofer ILT bieten neben Applikationsversuchen einen vollen Support für die Integration des Prozessüberwachungssystems in die Systeme ihrer Kunden. Dazu gehört nicht nur die Kalibrierung des Systems sondern auch eine Anpassung an die Optik beim Kunden.

Das System wird auf der LASER World of Photonics in München vom 23. bis 26. Mai 2011 auf dem Fraunhofer-Gemeinschaftsstand (Halle C2, Stand 330) vorgestellt.

Ansprechpartner im Fraunhofer ILT
Für Fragen stehen Ihnen unsere Experten zur Verfügung:
Dipl.-Ing. Christoph Franz
Bereich Sensorik
Telefon +49 241 8906-621
christoph.franz@ilt.fraunhofer.de
Dipl.-Ing. Peter Abels
Bereich Sensorik
Telefon +49 241 8906-428
peter.abels@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kleben ohne Klebstoff - Schnelles stoffschlüssiges Fügen von Metall und Thermoplast
22.02.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics