Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserbasierte Kunststoffbearbeitung

16.07.2014

Um den Einsatz von Laserstrahlen bei der Herstellung von Mikrokanalbauteilen geht es in einem Forschungsprojekt der TH Mittelhessen in Friedberg.

Projektleiter ist Prof. Dr. Rolf Klein vom Kompetenzzentrum für Optische Technologien und Systeme. Das Land Hessen fördert das Vorhaben im Programm „Forschung für die Praxis“ für ein Jahr mit 35.000 Euro. Partner ist World Precision Instruments, ein Hersteller von Laborbedarf mit Hauptsitz in den USA.


Mit einer Laserschweißmaschine will Prof. Rolf Klein die Bauteile zunächst mit einem Absorber versehen und dann flüssigkeits- und gasdicht abschließen.

Mikrokanalbauteile sind Werkzeuge für eine miniaturisierte Analysetechnik in der Chemie und Biotechnologie. Sie werden zum Beispiel in der Wirkstoffforschung, der klinischen Diagnostik, der Umweltanalytik oder der Genom-Analyse eingesetzt.

Die Kunststoffkomponenten bestehen aus einem Funktionskörper mit Mikrokammern und Mikrokanälen mit einer Breite von weniger als einem halben Millimeter. Sie werden mit einem Deckel flüssigkeits- und gasdicht abgeschlossen.

Herkömmliche Schweiß- oder Klebeverfahren zur Verbindung von Funktionskörper und Deckel können die Kanäle verstopfen oder verformen. Auch laserbasierte Methoden stoßen bislang bei sehr geringen Kanalabmessungen an Grenzen. Klein möchte die Absorption der Laserstrahlung auf die Oberfläche einer Bauteilkomponente und damit auch das Schmelzvolumen begrenzen.

Dafür will er die transparenten Kunststoffteile vor dem Laserstrahlschweißen durch ein Thermotransfer-Druckverfahren mit einem Laserabsorber beschichten. Der Absorber soll verhindern, dass sich die Mikrokanalstruktur während des Schweißprozesses verändert.

Die aktuellen Arbeiten sieht Klein als Grundlage für ein größeres Forschungsprojekt, in dem die Herstellung solcher Bauteile zur industriellen Produktionsreife gebracht wird.

„Wir wollen ein Fertigungsverfahren für geometrisch hochpräzise Mikrostrukturbauteile entwickeln, das unter wirtschaftlichen Gesichtspunkten in der Großserienproduktion und in der Kleinserienfertigung eingesetzt werden kann. Die Möglichkeit, die Mikrostruktur durch den örtlich begrenzten Fügeprozess noch kleiner zu dimensionieren und noch kompakter zu bauen, eröffnet zusätzliches Potential, Werkstoffe einzusparen und die Funktionalität zu optimieren“, so der Wissenschaftler.

Erhard Jakobs | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neues Verfahren bringt komplex geformte Verbundwerkstoffe in die Serie
23.01.2017 | Evonik Industries AG

nachricht Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile
19.01.2017 | Fraunhofer IFAM

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Allen Unkenrufen zum Trotz“ Neues Projekt sorgt für Schutz der Gelbbauchunken in Bayern

24.01.2017 | Förderungen Preise

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungsnachrichten

Forscher spinnen künstliche Seide aus Kuhmolke

24.01.2017 | Materialwissenschaften