Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Hochleistungs-Zellen leuchten – Neues Verfahren zur effizienteren Herstellung rekombinanter Proteine

20.07.2010
Eine effiziente Herstellung rekombinanter Proteine hängt insbesondere davon ab, dass es gelingt, für den Aufbau von Zellkulturen nur hochproduktive Zellen zu verwenden. Für die Identifizierung und Auswahl dieser Zellen hat ein Forscherteam am Lehrstuhl für Bioprozesstechnik der Universität Bayreuth jetzt ein kostengünstiges Verfahren entwickelt, das keinen hohen technischen Aufwand erfordert.

Aus der Medizin und der Nahrungsmittelindustrie sind sie nicht mehr wegzudenken: Eiweiße, die mithilfe gentechnisch veränderter Organismen biotechnologisch hergestellt werden. In der Forschung heißen sie "rekombinante Proteine".

Prominente Beispiele sind das Hormon Insulin, das die Behandlung der Zuckerkrankheit unterstützt, oder das Enzym Lab, das bei der Produktion bestimmter Käsesorten eingesetzt wird. Die künstliche Herstellung solcher Proteine folgt in allen Fällen dem gleichen Schema. Ausgangspunkt ist ein Gen, das imstande ist, in der Zelle die Entstehung des gewünschten Proteins – des sogenannten "Zielproteins" – zu steuern. Das Gen wird mithilfe eines Transportmoleküls in viele lebende Zellen eingeschleust, beispielsweise in Bakterien, Pilze oder Säugetierzellen. Jede dieser Wirtszellen baut das fremde Gen in das Genom ein, das sich im Zellkern befindet und die Gesamtheit der vererbbaren Informationen enthält. Dieser gesamte Vorgang wird in der Forschung als "Transfektion" bezeichnet.

Die Herausforderung: die Identifizierung hochproduktiver Zellen

Die durch Transfektion entstehenden Wirtszellen unterscheiden sich dadurch, dass sie das Gen nicht an der gleichen Stelle und auch nicht auf die gleiche Weise in das Genom einbauen. Deshalb besitzen sie - und ebenso die von ihnen abstammenden, durch Zellteilung entstehenden Zellen - eine höchst unterschiedliche Leistungsfähigkeit, was die Erzeugung des Zielproteins betrifft. Einige wenige Zellen produzieren große Mengen des Zielproteins. Viele andere Zellen hingegen erzeugen das Protein nur in kleinen Mengen oder verweigern die Herstellung sogar ganz. Eine effiziente Industrieproduktion ist deshalb nur möglich, wenn es gelingt, die hochproduktiven Zellen auszuwählen und nur sie für den Aufbau von Zellkulturen zu verwenden. Eine schwierige Aufgabe: Denn diese „Leistungsträger“ machen weit weniger als 0,5 Prozent aller Zellen aus, die bei der Transfektion entstehen.

Die Forschungsidee: Verkoppelung mit dem Gen eines fluoreszierenden Proteins

Zur Lösung dieser Aufgabe hat ein Forschungsteam am Lehrstuhl für Bioprozesstechnik der Universität Bayreuth jetzt ein kostengünstiges und überaus praktikables Verfahren entwickelt. Es kommt insbesondere Universitäten, Forschungsinstituten und mittelständischen Unternehmen zugute. Professorin Dr. Ruth Freitag und ihre Mitarbeiterinnen beschreiben ihre Forschungsidee und deren Umsetzung in einem Beitrag für das "Biotechnology Journal". Im Mittelpunkt des Verfahrens steht eine Variante des grün fluoreszierenden Proteins, kurz EGFP. Dieses Eiweiß hat die Eigenschaft, grün zu fluoreszieren, wenn es durch blaues oder ultraviolettes Licht angeregt wird. Für seine Entdeckung und Weiterentwicklung erhielt ein internationales Forscherteam im Jahre 2008 den Nobelpreis. Heute wird EGFP an vielen Stellen in der biologischen und chemischen Forschung eingesetzt.

An diese Verwendung knüpft die in Bayreuth entwickelte gentechnische Methode an. Sie koppelt zwei Gene aneinander: das Gen, das die Erzeugung des rekombinanten Zielproteins (wie z.B. Insulin) steuert, und das Gen, das für die Erzeugung des grün fluoreszierenden Proteins zuständig ist. In dieser Verbindung werden die Gene in die Eierstockzellen eines Chinesischen Hamsters übertragen. Fortlaufende Zellteilungen bewirken, dass die miteinander verkoppelten Gene immer wieder kopiert werden.

Fluoreszierende Proteine machen die hochproduktiven Zellen sichtbar

Die Pointe des Verfahrens liegt in der Weise, in der das Bayreuther Forschungsteam die Gene aneinander koppelt: Die von den beiden Genen gesteuerten Prozesse der Proteinherstellung verlaufen nicht nur parallel, sondern nutzen an einer entscheidenden Station dieselbe molekulare Basis – nämlich dieselbe Messenger-RNA. Genau dadurch ist gewährleistet, dass die verkoppelten Gene in jeder neu entstehenden Zelle ungefähr gleich aktiv sind. Wo viele fluoreszierende EGFP-Moleküle entstehen, wird parallel dazu auch das Zielprotein in großem Umfang hergestellt; und wo die Zahl der produzierten EGFPMoleküle gering ist, gilt dies auch für das Zielprotein.

Mit laborüblichen Geräten lassen sich nun stark und schwach fluoreszierende Zellen unterscheiden - schnell, mit hoher Präzision und ohne großen technischen Aufwand. Die stark fluoreszierenden Zellen sind genau die wenigen Zellen, die große Mengen des Zielproteins (z.B. des Insulins) produzieren und deshalb für die Einrichtung von Zellkulturen für die Produktion geeignet sind. Ein weiterer Vorteil dieser Technik: Die hochproduktiven Zellen scheiden das Zielprotein nach außen ab, während die fluoreszierenden EGFP-Moleküle im Inneren der Zelle bleiben. So ist gewährleistet, dass die in den Zellkulturen produzierten rekombinanten Proteine nicht durch EGFP-Moleküle verunreinigt werden.

Titelaufnahme:

Ruth Freitag, Valérie Jérôme, Denise Freimark:
A simple method for detection of high producing clones amongst transfected CHO cells,
in: Biotechnology Journal 5, 2010, pp. 24 - 31
DOI-Bookmark: http://dx.doi.org/10.1002/biot.200800264
Kontaktadresse für weitere Informationen:
Professorin Dr. Ruth Freitag
Lehrstuhl für Bioprozesstechnik
Universität Bayeuth
95440 Bayreuth
Telefon: +49 (0)921 / 55-7370
E-Mail: bioprozesstechnik@uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.uni-bayreuth.de
http://dx.doi.org/10.1002/biot.200800264

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neues Verfahren zur Inprozesskontrolle in der Warmumformung
18.08.2017 | Fachhochschule Südwestfalen

nachricht Forschungsprojekt zu optimierten Oberflächen von Metallpulver-Spritzguss-Werkzeugen
17.08.2017 | Hochschule Pforzheim

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Beschichtung lässt Muscheln abrutschen

18.08.2017 | Materialwissenschaften

Fettleber produziert Eiweiße, die andere Organe schädigen können

18.08.2017 | Biowissenschaften Chemie

Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

18.08.2017 | Geowissenschaften