Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dresdner Forscher entwickeln Verfahren zur Kontrolle neuartiger Informationsträger

02.02.2016

Die Erfolgsgeschichte der Informationsverarbeitung mit bewegten Elektronen nähert sich dem Ende. Der Drang zu immer kompakteren Chips stellt die Hersteller vor eine große Herausforderung, da die Verkleinerung zum Teil unlösbare physikalische Probleme bereitet. Die Zukunft könnte in magnetischen Spinwellen liegen, die schneller als elektronische Ladungsträger sind und weniger Strom verbrauchen. Forscher des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) und der TU Dresden konnten nun eine Methode entwickeln, um die Ausbreitung dieser Informationsträger auf der Nanoebene gezielt und einfach zu kontrollieren. Sie legten damit eine Grundlage für Nano-Schaltkreise, die auf Spinwellen aufbauen.

„Unsere heutige Informationsverarbeitung basiert auf Elektronen“, erklärt Dr. Helmut Schultheiß vom HZDR-Institut für Ionenstrahlphysik und Materialforschung.


In der Domänenwand, die sich zwischen den unterschiedlich ausgerichteten Magnetisierungen bildet, bleibt die Spinwelle gefangen. HZDR-Forscher konnten so ihren Ausbreitungsweg gezielt kontrollieren.

HZDR / H. Schultheiß

„Diese geladenen Teilchen fließen durch die Drähte und erzeugen auf diese Weise elektrische Ströme. Allerdings stoßen sie dabei mit Atomen zusammen und verlieren so Energie, die als Wärme an das Kristallgitter abgegeben wird. Das heißt, dass Chips umso wärmer werden, je enger die Elemente auf ihnen beieinander sitzen. Irgendwann ist dann der Punkt erreicht, bei dem sie einfach versagen, da die Wärme nicht mehr abgeführt werden kann.“ Der Leiter einer Emmy Noether-Nachwuchsgruppe verfolgt deshalb einen anderen Ansatz: Informationstransport über Spinwellen oder sogenannte Magnonen.

Das magnetische Moment der Elektronen

Mit dem Begriff Spin bezeichnen die Wissenschaftler den Drehimpuls der Elektronen um die eigene Achse. Dadurch verhalten sich die elektrischen Teilchen wie extrem kleine Magnete. In ferromagnetischen Materialien richten sie sich parallel aus. „Lenkt man nun einen Spin in eine andere Richtung, beeinflusst das auch die Nachbarspins“, erläutert Schultheiß.

„So entsteht eine Spinwelle, die sich durch den Festkörper fortpflanzt. Mit ihrer Hilfe lassen sich, genauso wie bei fließenden Ladungsträgern, Informationen transportieren und verarbeiten.“ Allerdings bewegen sich in diesem Fall die Elektronen selbst nicht. „Sie stoßen nirgends an und erzeugen somit kaum Wärme.“

Um sich im Wettrennen um die zukünftige Informationsverarbeitung durchzusetzen, werden aber Systeme benötigt, mit denen sich die Ausbreitung der Spinwellen auf der Nanoebene kontrollieren lässt. „Die bisherigen Ansätze beruhen entweder auf geometrisch vorgegebenen Leiterbahnen oder auf dem permanenten Einsatz externer Magnetfelder“, beschreibt Schultheiß den Stand der Forschung. „Bei der ersten Lösung lässt sich der Ausbreitungsweg nicht verändern, was für die Entwicklung von flexiblen Schaltkreisen jedoch nötig wäre. Mit der zweiten Methode ließe sich das Problem zwar lösen. Dafür steigt aber der Energieverbrauch enorm an.“

Kontrollierter Ausbreitungsweg

Den Wissenschaftlern gelang es nun, ein neues Verfahren zur gezielten Lenkung von Spinwellen zu entwickeln, indem sie grundlegende magnetische Eigenschaften ausnutzten: die Remanenz – also die Magnetisierung, die ein Festkörper nach dem Entfernen eines Magnetfelds beibehält – und die Entstehung sogenannter Domänenwände. „Mit dem Begriff bezeichnet man den Bereich in Festkörpern, an dem unterschiedlich ausgerichtete Magnetisierungen aufeinandertreffen“, erklärt Schultheiß.

In einem Experiment stellten die Forscher eine solche Domänenwand in einer Nanostruktur aus einer Nickel-Eisen-Legierung her. Mit Mikrowellen lösten sie anschließend eine Spinwelle aus. Wie ihre Untersuchungen gezeigt haben, blieben die Spinwellen einer bestimmten Frequenz in der Domänenwand gefangen, da die unterschiedlich orientierten magnetischen Bereiche als Einsperrung dienen. „Im übertragenen Sinn könnte man sagen, dass wir eine Straße mit Leitplanke konstruiert haben, auf der sich die Spinwellen kontrolliert ausbreiten“, freut sich Schultheiß über das Ergebnis.

Die Dresdner Physiker konnten aber sogar noch einen weiteren Erfolg feiern. Über kleine externe Magnetfelder weit unterhalb eines Millitesla – etwa hundertmal schwächer als ein handelsüblicher Hufeisenmagnet – manipulierten sie den Verlauf der Domänenwand. Und damit gleichzeitig die Ausbreitung der Spinwellen.

„Darauf könnte das Design rekonfigurierbarer Nano-Schaltkreise aufgebaut werden, die über Magnonen funktionieren“, schätzt Schultheiß ein. Trotzdem wird es, nach Ansicht des Forschers, bis zur Anwendung aber wohl noch einige Jahre dauern. „Wir sind immer noch im Stadium der Grundlagenforschung. Unsere Ergebnisse zeigen allerdings, dass wir uns auf einem guten Weg befinden.“

Publikation:
K. Wagner, A. Kákay, K. Schultheiss, A. Henschke, T. Sebastian, H. Schultheiss, „Magnetic domain walls as reconfigurable spin-wave nanochannels“, Nature Nanotechnology, 2016 (DOI: 10.1038/nnano.2015.339)

Weitere Informationen:
Dr. Helmut Schultheiß
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Tel. +49 351 458-3243
E-Mail: h.schultheiss@hzdr.de

Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel. +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden | www.hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Granulare Materie blitzschnell im Bild
21.09.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Sprühtrocknung: Wirkstoffe passgenau verkapseln
01.09.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie