Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3D-Bilder zum Anfassen - TU Dresden weiht hochmoderne 3D-Projektionstechnik ein

19.01.2007
Wer mit einer Spezialbrille schon einmal ein dreidimensionales Bild betrachtet hat, ist fasziniert: Dabei überlagern sich zwei an eine Wand projizierte Bilder und vermitteln so den Eindruck, ein Objekt räumlich zu sehen. Allerdings kann der Betrachter dabei immer nur eine Perspektive sehen: Egal, an welche Stelle des Raumes er sich bewegt, er nimmt stets dasselbe Bild wahr.

Eine hochmoderne 3D-Projektionstechnik, die am 19. Januar 2007 an der Professur für Konstruktionstechnik/CAD an der Fakultät Maschinenwesen der TU Dresden eingeweiht wurde, ermöglicht nun neue, faszinierende "Einsichten" - im wahrsten Sinne des Wortes.

Mit dem neuen "Virtual Reality Labor" werden Bilder von fünf Seiten aus in einen Raum hineinprojiziert, sodass die Betrachter um das daraus entstandene dreidimensionale Modell - wie um einen realen Gegenstand auch - herumlaufen können. Sie können das Bild aber ebenso von oben oder von unten betrachten. Es ist sogar denkbar, in das Bild hineinzusteigen. Auf diese Weise kann man zum Beispiel ein bisher nur am Computer konstruiertes und noch nicht gebautes Fahrzeug oder eine komplexe Maschine von Innen sehen.

Das "Virtual Reality Labor" befindet sich in einem vom Staatsbetrieb Sächsisches Immobilien- und Baumanagement (SIB) neu errichteten Anbau an den Heidebroek-Bau auf der Nöthnitzer Straße. Der Freistaat Sachsen investierte dafür rund 380.000 Euro. Das Herzstück ist die CAVE (Cave Automatic Virtual Environment), ein dunkler quaderförmiger Raum, der 2,40 m hoch und 3,60 m lang ist - dort entstehen die dreidimensionalen Bilder. Mit einer aufwendigen Technik werden dabei fünf verschiedene Bilder von außen in den dunklen Raum projiziert, sodass vor jeder der drei Wände, der Decke und dem Glasboden ein Bild entsteht. Für jede Projektionsfläche werden zwei Projektoren eingesetzt: Sie befinden sich unmittelbar hinter jeder der Flächen und projizieren das Bild über einen Spiegel in den Raum. Die Seitenflächen bestehen dabei aus speziellen Acrylscheiben, der Boden des Raumes aus einer dicken Glasplatte.

Unter einer Spezialbrille fügen sich die Einzelbilder zu einem räumlichen Objekt zusammen. Mehrere in den Ecken des Raumes angebrachte Kameras erfassen die Kopfbewegungen des Betrachters und geben die sich verändernden Koordinaten an einen Computer weiter - ein so genanntes Tracking-System. Entsprechend der Perspektive des Betrachters wird das 3D-Bild stets neu berechnet. Damit alle Bildcomputer synchrone Einzelbilder erzeugen, werden sie von einem weiteren Computer gesteuert.

Die faszinierende Technik bietet noch ein weiteres Highlight: Mit einem so genannten "Flystick", dessen Funktion mit der einer Computermaus verglichen werden kann, kann man einzelne Objekte des 3D-Bildes bewegen. Damit wird zum Beispiel am Modell getestet, ob sich die Teile einer komplexen Maschine zusammenbauen lassen.

So genannte CAVE-Systeme werden gegenwärtig vor allem im Fahrzeug-, Schiffs- und Flugzeugbau angewendet. Damit können am Computer erstellte Konstruktionen bereits vor ihrer Fertigung beurteilt werden. Am Modell können Konstrukteure beispielsweise erkennen, ob in einem neu geplanten Fahrzeug alle Bedienelemente für den Fahrer sichtbar und so angebracht sind, dass er sie auch erreichen kann. - Aspekte, die aus der zweidimensionalen Darstellung von Konstruktionsprogrammen (CAD) oft schwer ersichtlich sind.

Bisher dienen CAVE-Systeme nur als Visualisierungselement, mit denen Modelle beurteilt und notwendige Veränderungen erkannt werden können. Es nimmt jedoch viel Zeit in Anspruch, ein zu veränderndes Konstruktionsteil im 3D-Modell zu identifizieren, am CAD-Arbeitsplatz zu ändern und den aktuellen Stand wieder in das Modell zu übertragen. Diesen Vorgang wollen die Dresdner Forscher automatisieren. Das zweite Anwendungsgebiet sehen sie im Messen der Bewegungen eines Menschen, der im virtuellen Modell agiert. Das ist zum Beispiel für ergonomische Prüfungen wichtig.

Die Wissenschaftler arbeiten unter anderem mit der Melkus Sportwagen KG zusammen, die das Nachfolgemodell des RS 1000 entwickelt. Der RS 1000 war ein Sportrennwagen mit Flügeltüren auf der Basis eines Wartburgs und wurde von Heinz Melkus entwickelt, dem bekannten Rennfahrer und Rennwagenkonstrukteur der DDR.

Weitere Informationen:
Prof. Dr. Ralph Stelzer, Professor für Konstruktionstechnik/CAD, TU Dresden
Tel. 0351 463-33775, Fax 0351 463-37050, E-Mail: ralph.stelzer@tu-dresden.de

Kim-Astrid Magister | idw
Weitere Informationen:
http://www.tu-dresden.de/

Weitere Berichte zu: 3D-Projektionstechnik Betrachter CAVE-System Reality

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Granulare Materie blitzschnell im Bild
21.09.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Sprühtrocknung: Wirkstoffe passgenau verkapseln
01.09.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften