Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Poren in geordneten Positionen

29.08.2006
Max-Planck-Wissenschaftler überziehen Aluminium rasch mit einer strukturierten Oxidschicht, die sich für nanotechnologische Anwendungen eignet

Ob Kochgeschirr, Fensterrahmen oder Karosserieteile - Aluminium macht viele Dinge leicht und stabil. Wissenschaftler vom Max-Planck-Institut für Mikrostrukturphysik in Halle haben jetzt ein neues Verfahren entwickelt, um das Metall mit einem schützenden Oxid-Mantel zu überziehen. Dabei nutzen sie die Vorteile zweier bereits bekannter Verfahren der elektrolytischen Oxidation von Aluminium (Eloxal-Verfahren). Sie geben der Oxidschicht mit der neuen Methode nicht nur eine sehr geordnete Porenstruktur, sondern lassen die Poren auch sehr rasch wachsen. Die herkömmlichen Eloxal-Verfahren liefern entweder geordnete Strukturen oder waren schnell. Der neue Prozess eignet sich, um Produkte der Hochtechnologie wie photonische Kristalle oder gezielt Nanostrukturen herzustellen. (Nature Materials advanced online publication 20. August 2006)


(a) Elektronenmikroskopische Aufnahmen von Aluminiumoxid. Das weiche Eloxal-Verfahren (MA - linke Spalte) liefert feinere Poren als die harte Anodisierung (HA - rechte Spalte), das die Hallenser Wissenschaftler entwickelt haben. In der oberen Reihe ist die hexagonale Anordnung der Poren deutlich zu erkennen. Die unteren Aufnahmen des Querschnitts zeigen, wie dick die Membran sind. (b) Querschnittsaufnahme einer Aluminiumoxid-Membran: Hier haben die Wissenschaftler den Porenduchmesser beeinflusst, indem sie bei der Elektrolyse die Spannung variierten. Bild: Max-Planck-Institut für Mikrostrukturphysik

Egal wo uns Aluminium im Alltag begegnet, das Metall hat wahrscheinlich immer dasselbe mitgemacht: bis zu einer halben Stunde Elektrolyse bei mehr als 70 Volt in fünf bis zehn prozentiger Schwefelsäure. Die Prozedur macht den Werkstoff hart und imprägniert ihn mit einer Schicht aus Aluminiumoxid. Der Oxid-Mantel ist zwischen 5 und 25 Mikrometer dick und verhindert, dass weiterer Sauerstoff das Metall zersetzt. Die Methode, die schnell wirkt und preiswert ist, bezeichnen Materialwissenschaftler als hartes Eloxal-Verfahren oder harte Anodisierung (HA).

"Wir haben den HA-Prozess jetzt so abgewandelt, dass wir Oxidschichten mit regelmäßig angeordneten Poren erzeugen", sagt Woo Lee, der maßgeblich dazu beigetragen hat, den Prozess zu entwickeln. Eine geordnete Oxidschicht verspricht viele Anwendungen in der Nanotechnologie, während eine ungeordnete Oxidschicht gerade einmal Fensterrahmen und Karosserien gegen Korrosion imprägnieren kann. "Mit unserem Verfahren können wir auch photonische Kristalle züchten, mit denen die Optoelektronik arbeitet", so Woo Lee. Oder Materialwissenschaftler nutzen solche Strukturen, um darauf geordnet Nanodrähte wachsen zu lassen. "Unsere Methode ist für eine technische Anwendung sehr interessant, weil die Oxidschicht dabei in weniger als einer Stunde auf 50 Mikrometer anwächst", sagt Kornelius Nielsch, der die Arbeitgruppe leitet, die das neue Verfahren entwickelt hat. So schnell also wie im herkömmlichen HA-Prozess mit Schwefelsäure, der jedoch nur ungeordnete Porenstrukturen liefert.

Damit sich die Poren zu einem regelmäßigen Muster anordnen, füllen die Forscher Oxal- statt Schwefelsäure in die Elektrolysezelle. Dann legen sie für fünf bis zehn Minuten 40 Volt an und fahren die Spannung dann auf über 110 Volt hoch. Da sich die Elektrolysezelle dabei stark aufheizt, haben sie eine spezielle Kühlung entworfen. In einem Prozess, den Physiker als Selbstorganisation bezeichnen, ordnet sich die Poren des Aluminiumoxid in einer hexagonalen Struktur an, die an eine Bienenwabe erinnert. Dabei ist jede Pore regelmäßig von sechs weiteren umgeben.

Unter milderen Bedingungen, vor allem mit sehr viel niedrigerer Spannung, lassen sich solche geordneten Strukturen schon seit ca. 10 Jahren produzieren. Diese weichen Anodisierungs-(MA)-Verfahren brauchen allerdings Tage, um Oxidschichten zu erzeugen, deren Dicke technisch relevant ist. Mit dem neuen Verfahren haben die Wissenschaftler den Prozess nicht nur drastisch beschleunigt. Sie haben auch Poren in einem Abstand von 200 bis 300 Nanometern gezüchtet - das war mit den bereits bekannten Verfahren nicht möglich. Indem sie die Spannung verändern, manipulieren die Wissenschaftler zudem den Durchmesser der Poren: So formen sie Kanälchen, die sich mal um einige Nanometer weiten und dann wieder verjüngen.

Noch ist nicht völlig klar, warum das Aluminiumoxid solche geordneten Strukturen bildet. Fest steht nur: Mit niedriger Spannung zu beginnen, schafft eine wenige Nanometer dicke Schutzschicht, die das System bei hohen Spannungen vor Kurzschlüssen schützt. Auch die Kühlung leistet einen wichtigen Beitrag. Denn die Hitze, die auch im herkömmlichen HA-Prozess frei wird, stört das geordnete Wachstum und reißt die Oxidschicht auf. Doch welche Kraft zwingt das Oxid in die regelmäßige Struktur? "Wir vermuten, dass die hohe Wachstumsrate das Aluminium unter enormen mechanischen Stress setzt, weil es sich dabei im Volumen ausdehnt", sagt Woo Lee: "Diesem Stress weicht das System vermutlich aus, indem sich die Poren so kompakt wie möglich anordnen. Dabei bildet das Aluminiumoxid selbst-organisiert eine Bienenwabenstruktur." Ganz ähnlich, wie sich Bälle in einer Ebene zu einer hexagonalen Struktur anordnen, wenn man sie möglichst dicht zusammenpacken möchte. Zu verstehen, wie sich die geordnete Struktur aus Aluminiumoxid bilden, ist nicht nur von akademischem Interesse: Erst wenn die Wissenschaftler den Prozess verstehen, können sie auch gezielt weitere harte Eloxal-Verfahren mit wesentlich kleineren Poren oder anderen Elektrolyten entwickeln.

Originalveröffentlichung:

Woo Lee, Ran Ji, Ulrich Gösele, Kornelius Nielsch
Fast fabrication of long-range ordered porous alumina membranes by hard anodization.

Nature Materials advanced online-publications, 20. August 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: ALUMINIUM Aluminiumoxid Eloxal-Verfahren Oxidschicht Poren Prozess

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Staubarmes Recycling wertvoller Rohstoffe aus Elektronikschrott
16.11.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Mikrostrukturen mit dem Laser ätzen
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie