Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Europäisches Verbundprojekt Q2M entwickelt neuartige Methoden der Mikrofertigung

21.04.2006


Forschungszentrum Karlsruhe, Fraunhofer IPMS, 20/10 PERFECT VISION und Steinbeis Transferzentrum ASICON sind die deutschen Projektpartner



Das Forschungszentrum Karlsruhe, das Fraunhofer Institut für Photonische Mikrosysteme, die Firma 20/10 PERFECT VISION sowie das Steinbeis Transferzentrum ASICON sind die deutschen Partner von Q2M, einem EU-finanzierten Konsortium aus insgesamt zwölf Forschungsinstitutionen und High-Tech-Unternehmen. Das europäische Verbundprojekt soll neuartige Technologien für die Parallelfertigung von Mikrosystemen aus verschiedenartigen hochwertigen Materialien und Baugruppen entwickeln. Im Vordergrund stehen Anwendungen in den Bereichen Mikroventile, Mikrospiegel-Aktorsysteme und Komponenten für die drahtlose Kommunikation. Die EU fördert das dreijährige Vorhaben im Rahmen des 6. Rahmenprogramms mit 3,2 Millionen Euro. Hiervon erhalten die deutschen Partner einen Anteil von 763.000 Euro für die Entwicklung verbesserter Mikroaktoren auf der Basis von einkristallinem Silizium, von Formgedächtnislegierungen und piezoelektrischen Komponenten.



Mikrofertigungstechniken werden zur Produktion einer Vielzahl von Komponenten und Systemen eingesetzt, deren Strukturgrößen im Bereich einiger Millimeter bis hinunter zu 100 Nanometern liegen. Typische Einsatzgebiete sind die Fahrzeug-, Telekommunikations-, Druck-, Medizin- und Biotechnik.

Hochwertige Materialien, wie Formgedächtnislegierungen, piezokeramische Werkstoffe und bestimmte ultraflache einkristalline Silizium-Dünnschichten, eignen sich hervorragend für Sensor- und Aktor-Anwendungen in Mikrodimensionen. Die meisten Mikrostrukturierungstechniken stammen jedoch aus der IC-Fertigungstechnologie der Mikroelektronik. In der Regel lassen sich diese konventionellen Mikrotechnologien mit den so genannten "smart materials" nur sehr schwer kombinieren. "Um diesen hochwertigen Materialien zum industrierelevanten Durchbruch zu verhelfen, sind neuartige Parallelfertigungsverfahren zu deren Integration in Mikrosysteme erforderlich", so Manfred Kohl, Leiter der Mikroaktorik am Institut für Mikrostrukturtechnik des Forschungszentrums Karlsruhe.

Q2M (für "batch integration of high-quality materials to microsystems") wurde eingerichtet, um die bestehenden technologischen Einschränkungen zu umgehen. Im Wesentlichen werden dabei zwei Strategien verfolgt: Zum einen werden die hochwertigen Materialien als Komponenten in neuartigen Verbundwerkstoffen verwendet. Zum anderen werden neuartige Transfer-Verbindungstechniken entwickelt. Verbundwerkstoffe können mit unterschiedlichsten Herstellungsverfahren der Mikrotechnik kombiniert werden. Transfer-Verbindungstechniken erlauben die Übertragung ganzer Schichten der hochwertigen Materialien auf mikrostrukturierte Halbleiter- oder Polymersubstrate im Rahmen einer Parallelfertigung. Dabei sollen Klebeverfahren oder fremdstofffreie Verbindungstechniken wie das Ultraschallschweißen eingesetzt werden.

Das Forschungszentrum Karlsruhe entwickelt die Methoden zur Parallelfertigung abgeformter Polymer-Mikrostrukturen mit integrierten Aktoren aus Formgedächtnislegierungen und piezoelektrischen Werkstoffen. Die neuen Verfahren sollen bei der Entwicklung neuartiger Formgedächtnis- und Piezo-Mikroventile umgesetzt werden. Biotechnische und medizinische Anwendungen sind zwei vielversprechende Marktsegmente für solche mikrofluidischen Bauelemente. Die Mikroventile werden durch enge Zusammenarbeit mit Industriepartnern den Marktanforderungen angepasst. Einer dieser Partner ist ASICON, ein Steinbeis Transferzentrum. "Dank unseres Vertriebswesens können wir von ASICON nicht nur Rückmeldungen und Beurteilungen von größeren Herstellern, sondern auch von mittelständischen Unternehmen bieten", erklärt Olaf Messing, der Geschäftsführer von ASICON und Verantwortliche für den Vertrieb mikrofluidischer Komponenten in Asien.

Das Fraunhofer-Institut für Photonische Mikrosysteme (Fraunhofer IPMS) konzentriert sich auf die Entwicklung von Mikrospiegel-Aktorsystemen, so genannten "spatial light modulators" (SLM). Diese bestehen aus bis zu einer Million Mikrospiegeln, die unabhängig voneinander bewegt werden können. Mikrospiegel aus einkristallinem Silizium sollen durch neuartige Transfer-Verbindungstechniken direkt in die CMOS-Ansteuerelektronik integriert werden. Diese Vorgehensweise wird die Produktion von CMOS-MEMS-Mikrosystemen mit überlegenen optischen und mechanischen Eigenschaften ermöglichen. Ein wichtiger Einsatzbereich der SLM-Technologie ist die Augenheilkunde, ein Geschäftsbereich des Industriepartners 20/10 PERFECT VISION.

Das Q2M-Konsortium besteht zum einen aus akademischen Einrichtungen und Hightech-Unternehmen, von denen jeder ein Experte oder Pionier auf einem Kerngebiet dieser interdisziplinären wissenschaftlichen Herausforderung ist. Zum anderen besteht Q2M aus Anwendern der entwickelten Technologien. Diese Zusammenstellung verknüpft die Arbeiten innerhalb des Projektes mit den tatsächlichen industriellen Bedürfnissen und schafft zusätzlich die Basis für Weiterentwicklungen und Marktausschöpfung. Zusätzlich zu den deutschen Partnern umfasst das Konsortium die Cranfield University (UK), die Katholieke Universiteit Leuven (BE), Pondus Instruments AB (SE), IBM Research GmbH (CH), das Technical Research Centre of Finland VTT (FI), LK Products OY (FI) und das Royal Institute of Technology KTH (SE), das die Koordination des Projekts übernommen hat.

Die Internetseiten des Projekts finden Sie unter http://q2m.4m-net.org.

Das Forschungszentrum Karlsruhe ist Mitglied der Helmholtz-Gemeinschaft, die mit ihren 15 Forschungszentren und einem Jahresbudget von rund 2,1 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands ist. Die insgesamt 24000 Mitarbeiterinnen und Mitarbeiter der Helmholtz-Gemeinschaft forschen in den Bereichen Struktur der Materie, Erde und Umwelt, Verkehr und Weltraum, Gesundheit, Energie sowie Schlüsseltechnologien.

Dr. Joachim Hoffmann | idw
Weitere Informationen:
http://q2m.4m-net.org.
http://www.fzk.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Schnell, präzise, aber nicht kalt
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Neues Laserstrahl-Schweißverfahren des Fraunhofer IWS erlangt die Zertifizierung der DNV GL
16.05.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten