Edelsteine mit dem richtigen Schliff

Ist der Rohstein dreidimensional gescannt, berechnet die Software den optimalen Schliff - hier für einen Brillanten. © Fraunhofer ITWM

Erst der Facettenschliff macht aus einem unregelmäßigen Rohedelstein ein funkelndes Juwel und steigert seinen Wert. Noch ist diese Veredelung Handarbeit. In einer Produktionsanlage sollen Roboter künftig die individuelle und präzise Schleifarbeit übernehmen.

Kaum ein Laie sieht, was in einem Rohedelstein steckt. Im Gegenteil: Die matten Gesteinsbrocken ähneln eher Kandiszucker als strahlenden Juwelen. Der Fachmann aber weiß um den Wert eines Rohlings und dass er ihn mit dem richtigen Schliff um ein Vielfaches steigern kann. Allerdings nur dann, wenn die Geometrie jeder Facette stimmt und beim Schliff möglichst wenig des kostbaren Steins abgetragen wird. Bisher ist dies weitgehend Handarbeit. Die Firma Paul Wild GmbH bei Idar-Oberstein plant nun eine Anlage, die das Material noch besser verwertet. Sie soll das maximale Volumen aus den Rohsteinen herausholen und mit größerer geometrischer Präzision als bisher schleifen. Forscher des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern entwickeln diese moderne Fertigung.

„Normale Herstellungsprozesse sollen standardisierte Produkte liefern“, sagt Karl-Heinz Küfer vom ITWM. „Hier jedoch handelt es sich um eine hochpräzise, individuelle Produktion, denn jeder Rohstein ist anders geformt.“ Um das Material optimal zu nutzen, muss jeder Rohling zunächst einzeln und sehr exakt vermessen werden. Dies gelingt mit Streifenlichtprojektion, wie das Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena in einer Vorstudie zeigte. Diese Methode ermittelt die räumliche Gestalt der Steine aus der Krümmung projizierter dünner Lichtstreifen. Anhand dieser Daten berechnen die Forscher, welche Art Schliff sich am besten in die Geometrie des Rohlings fügt oder – bei vorgegebener Schliffart – wie sie den Edelstein rechnerisch in den Rohling einbetten müssen, um möglichst wenig Material abzutragen. Die Software berücksichtigt zudem, welche Schliffe noch im Lager sind und was die aktuellen Marktpreise für die verschiedenen Formen sind. Denn es darf auch etwas mehr des edlen Staubs rieseln, wenn dafür ein besonders gefragtes und teures Juwel entsteht. Etwa zehn Minuten benötigen die Computer für ihre Berechnungen. Damit steuern sie Roboter, die die Steine schleifen und polieren – bis auf einen Mikrometer und ein Tausendstel Winkelgrad genau. „Sowohl von der Zeit für die Berechnungen als auch von der Feinmechanik bewegen wir uns an die Grenze des derzeit machbaren“, betont Küfer.

Ende dieses Jahres soll ein Prototyp der Anlage in Betrieb gehen. Bis dahin werden die Forscher das mathematische Modell für die Steuerung der Produktion noch an die Geschwindigkeit des Prozesses anpassen. Die Feinmechanik für den Schleifprozess bauen sie in Kooperation mit der Firma Stefan Köhler aus der Region Idar-Oberstein auf.

Ansprechpartner:
Dr. habil. Karl-Heinz Küfer
Telefon: 06 31 / 3 03-18 51, Fax: -18 77
kuefer@itwm.fraunhofer.de

Dr. Peter Klein
Telefon: 06 31 / 3 03-18 04
peter.klein@itwm.fraunhofer.de

Media Contact

Dr. Johannes Ehrlenspiel idw

Weitere Informationen:

http://www.itwm.fraunhofer.de

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer