Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rechnend auf dem Weg zum selbstbügelnden Hemd

19.07.2004


Bestimmte Materiallegierungen kehren in bestimmten Temperaturbereichen nach Verformungen in ihre Ausgangslage zurück. An der Uni kassel werden die zugehörigen mathematischen Grundlagen erarbeitet.



Das wäre doch sehr praktisch: Einen Fön daran halten und schon ist die Kleidung knitterfrei, die Autobeule fort und die Brille, auf die man versehentlich getreten ist, wieder brauchbar. Im Prinzip gibt es das auch bereits - doch warum die so genannten Formgedächtnislegierungen diese Materialeigenschaften haben und wie sie sich gezielt berechnen und damit nutzen lassen, ist Forschungsthema eines DFG-geförderten Projektes an der Universität Kassel. Die Modellierung der Materialeigenschaften von Formgedächtnislegierungen wie etwa Nickel-Titan (NiTi) bearbeitet Dr. Dirk Helm im Institut für Mechanik, Fachbereich Maschinenbau der Universität Kassel. Dass das erste DFG-Vorhaben bereits seit 1996 gemeinsam mit dem inzwischen pensionierten Prof. Dr.-Ing. Peter Haupt gestartet wurde und erneut bis 2005 mit einer Gesamtsumme von rund einer halben Million Euro gefördert wird, zeigt, wie schwierig die Materie ist.



"Wir wissen, dass bestimmte Legierungen in bestimmten Temperaturbereichen ihr Formgedächtnis aktivieren und nach einer Verformung in ihre Ausgangslage zurückkehren. Sie können dabei im Vergleich zu anderen "smart materials" sehr große Kräfte entwickeln und weite Wege zurücklegen", so Helm. Um diese Materialeigenschaften effektiv in industriellen Anwendungen nutzen zu können, erarbeitete Helm ein mathematisches Modell im Rahmen der Kontinuumsmechanik, das bereits in der Forschung eingesetzt wird. Teilweise fehlen jedoch grundlegende Daten über die Materialeigenschaften, die Helm durch Versuche im Kasseler Uni-Labor gewinnt. Die so gewonnenen Materialeigenschaften fließen kontinuierlich in die Modellentwicklung ein. Die Modellierung der dreidimensionalen Materialeigenschaften von Formgedächtnislegierungen erfordert ein sehr kompliziertes mathematisches Modell, weil die Materialeigenschaften gleichzeitig durch thermische und mechanische Effekte beeinflusst werden, so dass in dem Modell miteinander gekoppelte Gleichungen auftreten" führt Helm aus. Dieser Hauptbestandteil des Projekts wird flankiert von experimentellen Untersuchungen. Dort werden mechanische Experimente durchgeführt bei unterschiedlichen Temperaturen und an verschiedenen Nickel-Titan-Formgedächtnislegierungen, und das sowohl an relativ dicken Drähten sowie an dünnwandigen Rohren. Mehraxiale Experimente wurden außer in Kassel weltweit an wenigen anderen Instituten durchgeführt" so Wissenschaftler Helm.

Mit seinem schon weit fortgeschrittenen Materialmodell ist man in der Lage, im Zusammenspiel mit einem Finite Elemente Programm nahezu beliebige Strukturen zu berechnen. Und dann kommt der Wissenschaftler so richtig ins Schwärmen: "Die sehr unterschiedlichen Eigenschaften der Formgedächtnislegierungen ließen sich einsetzen bei Gebäuden zum Schutz vor einem Erdbeben, im Bereich der Medizintechnik als Gefäßimplantate um Adern zu stützen, für Operationsinstrumente der minimal-invasiven Chirurgie sowie zur Gestaltung von Stellelementen in vielen Bereichen der Technik."

Info
Universität Kassel
Dr.-Ing. Dirk Helm
Institut für Mechanik
tel (0561) 804 2824
fax (0561) 804 2720
e-mail Helm@ifm.maschinenbau.uni-kassel.de

Ingrid Hildebrand | idw
Weitere Informationen:
http://www.uni-kassel.de
http://www.ifm.maschinenbau.uni-kassel.de

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Kleben ohne Klebstoff - Schnelles stoffschlüssiges Fügen von Metall und Thermoplast
22.02.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics