Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Max-Born-Institut: kürzester Lichtimpuls mit Molekülschwingungen erzeugt

31.05.2001


Femtosekunden-Applikationslabor des Max-Born-Instituts (MBI). Experimenteller Aufbau zur Erzeugung der bisher schnellsten "Lichtblitze" von 3,8 fs Dauer mit einem Titan-Saphir-Kurzpulslaser. Im Bild die Physiker Dr. Georg Korn (rechts) und Dr. Nikolai Zhavoronkov, Foto: MBI/Ralf Günther



Der Impuls liegt unter 4 Femtosekunden / Anregung mit einem Titan-Saphir-Kurzpulslaser / Dr. Georg Korn: "Jetzt können ultraschnelle Phänomene mit bisher unbekannter Zeitauflösung untersucht werden"



Den weltweit kürzesten Lichtimpuls mit einer Dauer von 3,8 Femtosekunden (fs) haben Forscher des Berliner Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) erzeugt. Das teilten sie kürzlich auf der CLEO 2001 (Conference on Lasers and Electro-Optics) in Baltimore, USA, in einem Postdeadline-Beitrag mit. Danach gelang ihnen dieser Weltrekord durch Manipulation der Eigenschaften von Licht bei Wechselwirkung mit schwingenden Gasmolekülen. Zur Anregung nutzen sie einen Titan-Saphir-Laser.

Femtosekunden-Technologie zielt darauf ab, superschnelle Prozesse in Natur und Technik durch optische Verfahren zu erfassen, zu analysieren und zu steuern. Dabei wird Licht je nach Einsatzgebiet als universelle Sonde, als Werkzeug und als hoch effizienter Informationsträger eingesetzt.
Anwendungen zeichnen sich in der Mess- und Prozesstechnik, der Kommunikationstechnologie, der Medizin und Biotechnologie sowie in der Umwelttechnik und Materialentwicklung ab.

Eine Femtosekunde (fs = 10-15 sec) ist der milliardste Teil einer millionstel Sekunde - eine Größenordnung, die sich gewöhnlicher Vorstellung verschließt. Zum Vergleich: In einer Sekunde umrundet ein ausgesandtes Lichtsignal ca. sieben Mal die Erde; in einer Femtosekunde durchquert dasselbe Signal nur den Bruchteil einer Haaresbreite. Setzt man eine Femtosekunde zu einer "normalen" Sekunde in Beziehung, so entspricht das dem Verhältnis von einer Sekunde zu 32 Millionen Jahren.

Die Spitzenleistung gelang der MBI-Gruppe mit einem von ihr entwickelten neuen Verfahren zur Manipulation der Phase von Lichtimpulsen. Bisherige Verfahren basieren auf der so genannten nichtlinearen Selbsteinwirkung (Selbstphasenmodulation) des Lichtimpulses. Dieser Prozess erzeugt zusätzliche Frequenzkomponenten, die dann durch Kompression zu einem kürzeren Impuls quasi zusammengepresst werden. Dieser Prozess ist aber nicht so gut kontrollierbar.


Bei ihrem neuen Verfahren nutzen die MBI-Physiker die molekularen Schwingungen in einer Gassäule. Moleküle schwingen im Bereich unter 100 fs und sind damit als sehr schnelle Lichtmodulatoren einsetzbar. Das MBI-Team regt die schwingenden Gasmoleküle mit einem ersten starken Laserpuls, ähnlich einem Hammerschlag, an. Dann wird ein zweiter Puls durch das Gas geschickt, wobei sich seine Phase durch die bereits schwingenden Moleküle verändert und wieder neue Frequenzkomponenten entstehen. "Es ist eine kleine Variation des zeitlichen Abstands zwischen dem ersten und zweiten Puls, mit der wir die Phase des Lichtes in den richtigen Zustand bringen, so dass sich die Kompression dann leichter durchführen lässt", erklärt Projektleiter Dr. Georg Korn. Dieser Trick bietet einen weiteren Vorteil: der Prozess ist dann wesentlich besser zu kontrollieren.

Die experimentellen Arbeiten zur Entwicklung und Anwendung von Femtosekundenlasern verlangen hohes experimentelles Geschick und viel Erfahrung. "Ich hatte das große Glück, Dr. Nikolai Zhavoronkov als einen erfahrenen Laserphysiker an meiner Seite zu haben, der sich in der monatelangen Vorbereitung des Experiments engagiert hat", bemerkt Dr. Korn. Seine Arbeitsgruppe gehört zum Bereich "Cluster und Grenzflächen" (Leitung Prof. Dr. Ingolf Hertel) des Max-Born-Instituts.

Im MBI werden ultraschnelle Laser zur Aufklärung von chemischen Elementarprozessen eingesetzt, die u.a. für die Materialforschung und die Katalyse von Bedeutung sind. Die extrem kurzen Pulse können jetzt zur Untersuchung von ultraschnellen dynamischen Phänomenen mit einer bisher unbekannten Zeitauflösung herangezogen werden.
Das Max-Born-Institut verfügt gegenwärtig über 7 ultraschnelle Lasersysteme. Im Femtosekunden-Applikationslabor werden diese Anlagen auch von Wissenschaftlern des In- und Auslands und aus der Industrie vielfältig genutzt. Dabei ist die finanzielle Unterstützung im Rahmen von Förderprogrammen der Europäischen Union eine wichtige Hilfe.

Ansprechpartner im MBI: Dr. Georg Korn, Tel.: 030 / 6392 1277, e-mail: korn@mbi-berlin.de

Joachim Moerke | idw
Weitere Informationen:
http://www.mbi-berlin.de/

Weitere Berichte zu: Femtosekunde Lichtimpuls MBI Max-Born-Institut Prozess

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Schnell, präzise, aber nicht kalt
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Neues Laserstrahl-Schweißverfahren des Fraunhofer IWS erlangt die Zertifizierung der DNV GL
16.05.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften