Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Max-Born-Institut: kürzester Lichtimpuls mit Molekülschwingungen erzeugt

31.05.2001


Femtosekunden-Applikationslabor des Max-Born-Instituts (MBI). Experimenteller Aufbau zur Erzeugung der bisher schnellsten "Lichtblitze" von 3,8 fs Dauer mit einem Titan-Saphir-Kurzpulslaser. Im Bild die Physiker Dr. Georg Korn (rechts) und Dr. Nikolai Zhavoronkov, Foto: MBI/Ralf Günther



Der Impuls liegt unter 4 Femtosekunden / Anregung mit einem Titan-Saphir-Kurzpulslaser / Dr. Georg Korn: "Jetzt können ultraschnelle Phänomene mit bisher unbekannter Zeitauflösung untersucht werden"



Den weltweit kürzesten Lichtimpuls mit einer Dauer von 3,8 Femtosekunden (fs) haben Forscher des Berliner Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) erzeugt. Das teilten sie kürzlich auf der CLEO 2001 (Conference on Lasers and Electro-Optics) in Baltimore, USA, in einem Postdeadline-Beitrag mit. Danach gelang ihnen dieser Weltrekord durch Manipulation der Eigenschaften von Licht bei Wechselwirkung mit schwingenden Gasmolekülen. Zur Anregung nutzen sie einen Titan-Saphir-Laser.

Femtosekunden-Technologie zielt darauf ab, superschnelle Prozesse in Natur und Technik durch optische Verfahren zu erfassen, zu analysieren und zu steuern. Dabei wird Licht je nach Einsatzgebiet als universelle Sonde, als Werkzeug und als hoch effizienter Informationsträger eingesetzt.
Anwendungen zeichnen sich in der Mess- und Prozesstechnik, der Kommunikationstechnologie, der Medizin und Biotechnologie sowie in der Umwelttechnik und Materialentwicklung ab.

Eine Femtosekunde (fs = 10-15 sec) ist der milliardste Teil einer millionstel Sekunde - eine Größenordnung, die sich gewöhnlicher Vorstellung verschließt. Zum Vergleich: In einer Sekunde umrundet ein ausgesandtes Lichtsignal ca. sieben Mal die Erde; in einer Femtosekunde durchquert dasselbe Signal nur den Bruchteil einer Haaresbreite. Setzt man eine Femtosekunde zu einer "normalen" Sekunde in Beziehung, so entspricht das dem Verhältnis von einer Sekunde zu 32 Millionen Jahren.

Die Spitzenleistung gelang der MBI-Gruppe mit einem von ihr entwickelten neuen Verfahren zur Manipulation der Phase von Lichtimpulsen. Bisherige Verfahren basieren auf der so genannten nichtlinearen Selbsteinwirkung (Selbstphasenmodulation) des Lichtimpulses. Dieser Prozess erzeugt zusätzliche Frequenzkomponenten, die dann durch Kompression zu einem kürzeren Impuls quasi zusammengepresst werden. Dieser Prozess ist aber nicht so gut kontrollierbar.


Bei ihrem neuen Verfahren nutzen die MBI-Physiker die molekularen Schwingungen in einer Gassäule. Moleküle schwingen im Bereich unter 100 fs und sind damit als sehr schnelle Lichtmodulatoren einsetzbar. Das MBI-Team regt die schwingenden Gasmoleküle mit einem ersten starken Laserpuls, ähnlich einem Hammerschlag, an. Dann wird ein zweiter Puls durch das Gas geschickt, wobei sich seine Phase durch die bereits schwingenden Moleküle verändert und wieder neue Frequenzkomponenten entstehen. "Es ist eine kleine Variation des zeitlichen Abstands zwischen dem ersten und zweiten Puls, mit der wir die Phase des Lichtes in den richtigen Zustand bringen, so dass sich die Kompression dann leichter durchführen lässt", erklärt Projektleiter Dr. Georg Korn. Dieser Trick bietet einen weiteren Vorteil: der Prozess ist dann wesentlich besser zu kontrollieren.

Die experimentellen Arbeiten zur Entwicklung und Anwendung von Femtosekundenlasern verlangen hohes experimentelles Geschick und viel Erfahrung. "Ich hatte das große Glück, Dr. Nikolai Zhavoronkov als einen erfahrenen Laserphysiker an meiner Seite zu haben, der sich in der monatelangen Vorbereitung des Experiments engagiert hat", bemerkt Dr. Korn. Seine Arbeitsgruppe gehört zum Bereich "Cluster und Grenzflächen" (Leitung Prof. Dr. Ingolf Hertel) des Max-Born-Instituts.

Im MBI werden ultraschnelle Laser zur Aufklärung von chemischen Elementarprozessen eingesetzt, die u.a. für die Materialforschung und die Katalyse von Bedeutung sind. Die extrem kurzen Pulse können jetzt zur Untersuchung von ultraschnellen dynamischen Phänomenen mit einer bisher unbekannten Zeitauflösung herangezogen werden.
Das Max-Born-Institut verfügt gegenwärtig über 7 ultraschnelle Lasersysteme. Im Femtosekunden-Applikationslabor werden diese Anlagen auch von Wissenschaftlern des In- und Auslands und aus der Industrie vielfältig genutzt. Dabei ist die finanzielle Unterstützung im Rahmen von Förderprogrammen der Europäischen Union eine wichtige Hilfe.

Ansprechpartner im MBI: Dr. Georg Korn, Tel.: 030 / 6392 1277, e-mail: korn@mbi-berlin.de

Joachim Moerke | idw
Weitere Informationen:
http://www.mbi-berlin.de/

Weitere Berichte zu: Femtosekunde Lichtimpuls MBI Max-Born-Institut Prozess

Weitere Nachrichten aus der Kategorie Verfahrenstechnologie:

nachricht Neues energieeffizientes Verfahren zur Herstellung von Kohlenstofffasern
13.03.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Dresdner Forscher drucken die Welt von Morgen
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen