Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Revolutioniert DNA-Barcoding die Gewässergüteanalyse?

09.12.2014

Ein deutsches Forschungsteam verglich die Kieselalgen in den Flüssen Oder und Lausitzer Neiße systematisch mit klassischen und modernen Bestimmungsmethoden.

Die moderne Bestimmung von Kieselalgenarten anhand ihrer Erbinformation, das DNA-Barcoding, ist demzufolge fast dreimal so genau wie die sehr detaillierte morphologische Untersuchung: Während molekulargenetisch 270 Taxa (d.h. Arten und Unterarten) entdeckt wurden, konnten morphologisch nur 103 Taxa identifiziert werden. Kieselalgen werden routinemäßig als Bioindikatoren innerhalb der EU-Wasserrahmenrichtlinie zur Bestimmung der Gewässergüte untersucht.


Eine Gewässerprobe der Lausitzer Neiße unter dem Lichtmikroskop: Die Artenfülle von Kieselalgen wird deutlich. Forschungsgruppe Diatomeen, Botanischer Garten und Botanisches Museum Berlin-Dahlem


Bei der Entnahme einer Probe aus der Oder in Slubice/Frankfurt an der Oder.

Forschungsgruppe Diatomeen, Botanischer Garten und Botanisches Museum Berlin-Dahlem

Die Untersuchung wird entscheidende Auswirkung für die Gewässergüteanalyse in Europa haben. Die verblüffenden Ergebnisse wurden gerade online in der renommierten Zeitschrift Molecular Ecology Resources veröffentlicht und wird in einer der nächsten gedruckten Ausgaben erscheinen. Beteiligt waren Forscherinnen und Forscher des Botanischen Gartens und Botanischen Museums Berlin-Dahlem der Freien Universität Berlin, des Leibniz-Institut für Gewässerökologie und Binnenfischerei, der Universität Köln und der Justus-Liebig-Universität Gießen.

Kieselalgen: Wichtige Bioindikatoren für die Gewässergüte

Kieselalgen (Diatomeen) sind in nahezu allen Gewässertypen zu finden. Die verschiedenen Kieselalgenarten reagieren empfindlich und spezifisch auf Änderungen der Umwelt wie Verschmutzung, Nährstoffversorgung, Säure und Salzgehalt und sind daher wichtige Bioindikatoren. Kieselalgen werden routinemäßig als Bioindikatoren innerhalb der EU-Wasserrahmenrichtlinie und global zur Bestimmung der Gewässergüte untersucht.

Dabei werden vorrangig substratbewohnende Kieselalgen untersucht, da sie im Gegensatz zu freischwimmenden Kieselalgen nicht durch Strömung oder andere Einwirkungen verdriftet werden was zur Verfälschung der Ergebnisse führen kann. Um die Kieselalgen eines Gewässers für eine Gewässergüteanalyse zu untersuchen, werden sie von Steinen oder anderen Untergründen abgekratzt und anschließend im Labor untersucht. Diese bodenlebenden Kieselalgen kennt fast jeder als rutschigen Schleimfilm auf Steinen.

Schwächen der bisherigen Gewässergüteanalyse

Bei aktuellen Gewässergüteanalysen werden die darin lebenden Kieselalgen nur lichtmikroskopisch untersucht, um Aussagen über die Wasserqualität zu treffen. Tatsächlich sind jedoch viele für die Bestimmung wichtige Merkmale lichtmikroskopisch nicht oder nur schwer zu erfassen. Zudem hängt die routinemäßige Bestimmung der im Wasser lebenden Kieselalgen von den taxonomischen Fähigkeiten und Augen derjenigen ab, die die Proben auswerten.

DNA-Barcoding: Die konkurrenzfähige neue Methode

Die Bestimmung von Kieselalgenarten anhand ihrer Erbinformation, das DNA-Barcoding, ist sehr viel objektiver und feiner als die herkömmliche lichtmikroskopische Untersuchung. Langfristig wird im DNA-Barcoding die neue Methode zur Gewässergüteanalyse gesehen. Aktuell ist das DNA-Barcoding noch teurer und zeitaufwändiger als die klassische Untersuchungsmethode. Wird das Verfahren jedoch automatisiert, lassen sich Zeit und Kosten deutlich reduzieren.

Langfristig könnte DNA-Barcoding die Gewässergüteanalyse somit revolutionieren. Wichtige Vorbedingung für erfolgreiches DNA-Barcoding ist die Erarbeitung einer Referenz-Datenbank der DNA -Sequenzen aller Kieselalgen eines Gewässersystems, da nur mit diesem die analysierten DNA -Sequenzen im Vergleich zugeordnet werden können.

Die Untersuchung an der Oder und Lausitzer Neiße ist ein Modellfall und auf andere Gewässer in Mitteleuropa übertragbar. Die Kieselalgen von sieben Standorten der beiden Flüsse wurden untersucht. Die molekulargenetische Untersuchung zeigte insgesamt 28.000 DNA -Sequenzen von Kieselalgen, die 270 Taxa (Arten und Unterarten) zugeordnet werden konnten. Der Vergleich erfolgte mithilfe einer Referenz-Datenbank mit Daten aus eigener Forschung und Daten anderer WissenschaftlerInnen.

Interessant ist, dass etwa 70 Prozent der DNA -Sequenzen bis auf die Art genau bestimmt werden konnten, etwa 30 Prozent jedoch nur bis zur Gattung, entweder weil die Art noch unbekannt und neu ist oder weil sie bisher in der Referenzdatenbank nicht vorhanden ist. Das ist umso erstaunlicher, da die Norddeutsche Tiefebene eines der am besten untersuchten Gebiete der Erde ist in Bezug auf Kieselalgen. Die WissenschaftlerInnen konnten zeigen, dass selbst hier noch vieles unerforscht ist und von der angewendeten Methodik abhängt.

Kieselalgen sind die Lunge und Nahrung der Erde

Kieselalgen sind einzellige Algen von meist nur einem Zwanzigstel Millimeter Durchmesser, für deren Beobachtung ein leistungsstarkes Mikroskop erforderlich ist. Sie leben in großer Zahl in Seen, Flüssen und Meeren und besiedeln selbst kleinste feuchte Lebensräume wie Baumrinden und Erde. Die Zahl der Diatomeenarten wird auf mehrere 100.000 geschätzt, wobei gegenwärtig erst 30.000 Kieselalgenarten beschrieben sind. Trotz ihrer geringen Größe kommt Kieselalgen eine herausragende ökologische Bedeutung zu. Der dank ihrer Photosyntheseaktivität freigesetzte Sauerstoff macht etwa 25 % der weltweiten Sauerstoffproduktion aus. Sie leisten 25 % der Kohlendioxid-Fixierung der Erde, stehen am Anfang der Nahrungskette und tragen bis zu 25-45 % zur globalen Primärproduktion bei.

Charakteristische Kieselschale

Charakteristisch für den Aufbau der Diatomeen sind ihre gläsernen Schalen aus Kieselsäure, weswegen sie auch Kieselalgen genannt werden. Die Schalen umgeben die Zelle schützend, sind sehr vielfältig gestaltet und symmetrisch durchbrochen. Die Form der strukturierten Schalen ist artspezifisch und wurde schon früh in der Naturwissenschaft systematisch erfasst.

Publikation des Artikels:
Zimmermann, J., Glöckner, G., Jahn, R., Enke, N. und Gemeinholzer, B. (2014), Metabarcoding vs. morphological identification to assess diatom diversity in environmental studies. Molecular Ecology Resources.
doi: 10.1111/1755-0998.12336
Online http://onlinelibrary.wiley.com/doi/10.1111/1755-0998.12336/abstract

Weitere Informationen geben Ihnen gern:

Dr. Regine Jahn, Leiterin der Forschungsgruppe Diatomeen,
Freie Universität Berlin, Botanischer Garten und Botanisches Museum Berlin-Dahlem,
Telefon: 030 / 838-50142, E-Mail: r.jahn@bgbm.org

Jonas Zimmermann, Forschungsgruppe Diatomeen,
Freie Universität Berlin, Botanischer Garten und Botanisches Museum Berlin-Dahlem
und Systematische Botanik, Justus-Liebig-Universität Gießen,
Telefon: 030 / 838-50144, E-Mail: j.zimmermann@bgbm.org


Weitere Informationen:

http://www.bgbm.org/de/presse/pressefotos#Kieselalgen_Oder  – Pressefotos
http://onlinelibrary.wiley.com/doi/10.1111/1755-0998.12336/abstract  – Artikel

Gesche Hohlstein | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Hochmodernes Forschungsflugzeug fliegt zurzeit über Europa
17.07.2017 | Universität Bremen

nachricht Baumgrenze wird nicht allein durch das Klima bestimmt
03.07.2017 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise