Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Permanentmagnete in einem Rutsch recyceln

02.09.2015

Elektromotoren oder Windräder werden durch starke Permanentmagnete angetrieben. Die leistungsstärksten Exemplare basieren auf den Seltenen Erden Neodym und Dysprosium. Ein neues Verfahren von Fraunhofer-Forschern ermöglicht es künftig, das Werkstoff-Gemisch schnell und kostengünstig zu recyceln.

Die Rotoren drehen sich surrend im Wind und versorgen die Netze mit Strom. Damit die Anlagen möglichst störungsfrei laufen und eine hohe Energieausbeute erzielen, stecken in der neusten Generation statt eines Getriebes immer öfter starke, tonnenschwere Permanentmagnete.


Beim Recyceln von Permanentmagneten setzen die Forscher auf den Melt-Spinning-Prozess.

© Fraunhofer-Projektgruppe IWKS

Auch in Autos leisten solche Magnete gute Dienste: Mit ihnen lassen sich die zahlreichen elektrischen Stellmotoren, die beispielsweise Scheibenwischer antreiben, deutlich kleiner und leichter auslegen. Elektrische Stellmotoren oder auch Servomotoren befinden sich an vielen Stellen im Auto, überall dort, wo etwas gezielt bewegt und positioniert wird, sei es das Seitenfenster oder die Einstellung des Sitzes.

Die leistungsstärksten Permanentmagnete basieren auf Neodym, Eisen und Bor. Auch Dysprosium ist oftmals enthalten. Das Problem: Während Eisen und Bor gut verfügbar sind, ist die Versorgung mit Neodym und Dysprosium kritisch.

Denn diese Seltenen Erden werden unter schwierigen Bedingungen und mit viel Energieaufwand gewonnen. Sie sind daher vergleichsweise teuer, und ihre Gewinnung hinterlässt einen ökologischen Fußabdruck. Zudem stammen diese Elemente zu über 90 Prozent aus China. Knapp die Hälfte der weltweit verfügbaren Reserven liegt dort.

Aus alt mach neu

Forscher versuchen daher, Magnete zu recyceln. Bislang heißt das: Sie ziehen die einzelnen Seltenen Erden aus dem Magneten wieder heraus. Das ist jedoch sehr aufwändig und kostenintensiv. Einen anderen Ansatz verfolgen Wissenschaftler der Fraunhofer-Projektgruppe für Wertstoffkreisläufe und Ressourcenstrategie IWKS in Alzenau und Hanau des Fraunhofer-Instituts für Silicatforschung ISC.

»Statt jede Seltene Erde einzeln wiederzugewinnen, recyceln wir den kompletten Werkstoff, also den gesamten Magneten – und das in wenigen Schritten«, erläutert Oliver Diehl, Wissenschaftler in der Projektgruppe IWKS. »Der Prozess ist deutlich einfacher und effizienter, denn die Zusammensetzung des Materials ist bereits wie gewünscht.«

Die Wissenschaftler setzen dabei auf das Melt-Spinning-Verfahren – eine Methode, die sich für andere Legierungen bereits bewährt hat. Auf Deutsch heißt »Melt-Spinning« »Schmelz-Schleudern«. Bekannter ist das Verfahren als »Rascherstarrung«. Der Name ist dabei Programm: Die Forscher verflüssigen den Magneten in einem Schmelztiegel. Über eine Düse gelangt das flüssige, über 1000 Grad Celsius heiße Material auf ein wassergekühltes Kupferrad, das sich mit einer Geschwindigkeit von 10 bis 35 Metern pro Sekunde dreht. Sobald der Schmelztropfen das Kupfer berührt, gibt er seine Hitze innerhalb von Sekundenbruchteilen an das Metall ab und erstarrt. Die entstehenden Gebilde nennen die Forscher »Flakes«.

Das Besondere ist die Struktur, die sich in den Flakes bildet. Ließe man die Schmelze auf übliche Weise erstarren, würden die Atome sich in Reih und Glied in einem Kristallgitter anordnen. Beim Melt-Spinning-Verfahren dagegen wird die Kristallisation vermieden: Es entsteht wahlweise eine amorphe Struktur, bei der die Atome vollkommen unregelmäßig angeordnet sind, oder eine nanokristalline Struktur, bei der sich die Atome nur in nanometergroßen Bereichen in einer Kristallstruktur anordnen.

Der Vorteil: Die Korngrößen – also die Bereiche gleicher Kristallstruktur – lassen sich gezielt variieren. Über sie kann man auch die Eigenschaften des Permanentmagneten verändern. In einem weiteren Schritt zermahlen die Forscher die Flakes zu einem Pulver, das sich weiterverarbeiten lässt. »Wir pressen es zu seiner endgültigen Form«, so Diehl.

Erster Magnet erfolgreich recycelt

Eine Demonstrationsanlage haben die Wissenschaftler bereits aufgebaut und konnten dort Magnete wiederverwerten. »Die Demoanlage kann bis zu einem halben Kilogramm Schmelze verarbeiten und liegt damit zwischen einer Labor- und einer Großanlage«, konkretisiert Diehl. Nun optimieren die Forscher die Eigenschaften der recycelten Magnete, indem sie das Melt-Spinning-Verfahren variieren – wie zum Beispiel die Geschwindigkeit des Kupferrades oder die Temperatur der Schmelze während des Prozesses der Rascherstarrung. Beides hat Einfluss auf die Abkühlrate und damit letztlich auf die Kristallstruktur des erstarrten Materials.

Bis dato lassen sich die Magnete jedoch nur schwer aus den Motoren entfernen. Die Wissenschaftler entwickeln daher mögliche Wege für eine Rücklaufkette von Altmotoren, ebenso wie für eine demontagegerechte Konstruktion: Wie ließen sich die Motoren alternativ aufbauen, so dass die Magnete später leicht ausgebaut werden können? Welche Kosten entstehen, ist momentan noch schwer zu beantworten: »Der zu erwartende finanzielle Vorteil bei der Wiederverwertung der Magnete hängt nicht nur vom Recyclingprozess ab, sondern auch von der Preisentwicklung der Seltenen Erden«, sagt Diehl. »Je höher die Rohstoffpreise für Seltene Erden sind, desto mehr lohnt es sich, auf die bereits vorhandenen Materialien zurückzugreifen.«

Weitere Informationen:

http://www.fraunhofer.de/de/presse/presseinformationen/2015/September/permanentm...

Dr. Eva Bertrand | Fraunhofer Forschung kompakt

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Ausdehnung von Ackerflächen reduziert CO2-Aufnahme
20.06.2018 | Karlsruher Institut für Technologie

nachricht Luftreiniger und Schmutzpumpe: der indische Monsun
15.06.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics