Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Permanentmagnete in einem Rutsch recyceln

02.09.2015

Elektromotoren oder Windräder werden durch starke Permanentmagnete angetrieben. Die leistungsstärksten Exemplare basieren auf den Seltenen Erden Neodym und Dysprosium. Ein neues Verfahren von Fraunhofer-Forschern ermöglicht es künftig, das Werkstoff-Gemisch schnell und kostengünstig zu recyceln.

Die Rotoren drehen sich surrend im Wind und versorgen die Netze mit Strom. Damit die Anlagen möglichst störungsfrei laufen und eine hohe Energieausbeute erzielen, stecken in der neusten Generation statt eines Getriebes immer öfter starke, tonnenschwere Permanentmagnete.


Beim Recyceln von Permanentmagneten setzen die Forscher auf den Melt-Spinning-Prozess.

© Fraunhofer-Projektgruppe IWKS

Auch in Autos leisten solche Magnete gute Dienste: Mit ihnen lassen sich die zahlreichen elektrischen Stellmotoren, die beispielsweise Scheibenwischer antreiben, deutlich kleiner und leichter auslegen. Elektrische Stellmotoren oder auch Servomotoren befinden sich an vielen Stellen im Auto, überall dort, wo etwas gezielt bewegt und positioniert wird, sei es das Seitenfenster oder die Einstellung des Sitzes.

Die leistungsstärksten Permanentmagnete basieren auf Neodym, Eisen und Bor. Auch Dysprosium ist oftmals enthalten. Das Problem: Während Eisen und Bor gut verfügbar sind, ist die Versorgung mit Neodym und Dysprosium kritisch.

Denn diese Seltenen Erden werden unter schwierigen Bedingungen und mit viel Energieaufwand gewonnen. Sie sind daher vergleichsweise teuer, und ihre Gewinnung hinterlässt einen ökologischen Fußabdruck. Zudem stammen diese Elemente zu über 90 Prozent aus China. Knapp die Hälfte der weltweit verfügbaren Reserven liegt dort.

Aus alt mach neu

Forscher versuchen daher, Magnete zu recyceln. Bislang heißt das: Sie ziehen die einzelnen Seltenen Erden aus dem Magneten wieder heraus. Das ist jedoch sehr aufwändig und kostenintensiv. Einen anderen Ansatz verfolgen Wissenschaftler der Fraunhofer-Projektgruppe für Wertstoffkreisläufe und Ressourcenstrategie IWKS in Alzenau und Hanau des Fraunhofer-Instituts für Silicatforschung ISC.

»Statt jede Seltene Erde einzeln wiederzugewinnen, recyceln wir den kompletten Werkstoff, also den gesamten Magneten – und das in wenigen Schritten«, erläutert Oliver Diehl, Wissenschaftler in der Projektgruppe IWKS. »Der Prozess ist deutlich einfacher und effizienter, denn die Zusammensetzung des Materials ist bereits wie gewünscht.«

Die Wissenschaftler setzen dabei auf das Melt-Spinning-Verfahren – eine Methode, die sich für andere Legierungen bereits bewährt hat. Auf Deutsch heißt »Melt-Spinning« »Schmelz-Schleudern«. Bekannter ist das Verfahren als »Rascherstarrung«. Der Name ist dabei Programm: Die Forscher verflüssigen den Magneten in einem Schmelztiegel. Über eine Düse gelangt das flüssige, über 1000 Grad Celsius heiße Material auf ein wassergekühltes Kupferrad, das sich mit einer Geschwindigkeit von 10 bis 35 Metern pro Sekunde dreht. Sobald der Schmelztropfen das Kupfer berührt, gibt er seine Hitze innerhalb von Sekundenbruchteilen an das Metall ab und erstarrt. Die entstehenden Gebilde nennen die Forscher »Flakes«.

Das Besondere ist die Struktur, die sich in den Flakes bildet. Ließe man die Schmelze auf übliche Weise erstarren, würden die Atome sich in Reih und Glied in einem Kristallgitter anordnen. Beim Melt-Spinning-Verfahren dagegen wird die Kristallisation vermieden: Es entsteht wahlweise eine amorphe Struktur, bei der die Atome vollkommen unregelmäßig angeordnet sind, oder eine nanokristalline Struktur, bei der sich die Atome nur in nanometergroßen Bereichen in einer Kristallstruktur anordnen.

Der Vorteil: Die Korngrößen – also die Bereiche gleicher Kristallstruktur – lassen sich gezielt variieren. Über sie kann man auch die Eigenschaften des Permanentmagneten verändern. In einem weiteren Schritt zermahlen die Forscher die Flakes zu einem Pulver, das sich weiterverarbeiten lässt. »Wir pressen es zu seiner endgültigen Form«, so Diehl.

Erster Magnet erfolgreich recycelt

Eine Demonstrationsanlage haben die Wissenschaftler bereits aufgebaut und konnten dort Magnete wiederverwerten. »Die Demoanlage kann bis zu einem halben Kilogramm Schmelze verarbeiten und liegt damit zwischen einer Labor- und einer Großanlage«, konkretisiert Diehl. Nun optimieren die Forscher die Eigenschaften der recycelten Magnete, indem sie das Melt-Spinning-Verfahren variieren – wie zum Beispiel die Geschwindigkeit des Kupferrades oder die Temperatur der Schmelze während des Prozesses der Rascherstarrung. Beides hat Einfluss auf die Abkühlrate und damit letztlich auf die Kristallstruktur des erstarrten Materials.

Bis dato lassen sich die Magnete jedoch nur schwer aus den Motoren entfernen. Die Wissenschaftler entwickeln daher mögliche Wege für eine Rücklaufkette von Altmotoren, ebenso wie für eine demontagegerechte Konstruktion: Wie ließen sich die Motoren alternativ aufbauen, so dass die Magnete später leicht ausgebaut werden können? Welche Kosten entstehen, ist momentan noch schwer zu beantworten: »Der zu erwartende finanzielle Vorteil bei der Wiederverwertung der Magnete hängt nicht nur vom Recyclingprozess ab, sondern auch von der Preisentwicklung der Seltenen Erden«, sagt Diehl. »Je höher die Rohstoffpreise für Seltene Erden sind, desto mehr lohnt es sich, auf die bereits vorhandenen Materialien zurückzugreifen.«

Weitere Informationen:

http://www.fraunhofer.de/de/presse/presseinformationen/2015/September/permanentm...

Dr. Eva Bertrand | Fraunhofer Forschung kompakt

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Von der Weser bis zur Nordsee: PLAWES erforscht Mikroplastik-Kontaminationen in Ökosystemen
20.09.2017 | Universität Bayreuth

nachricht Der Monsun und die Treibhausgase
18.09.2017 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie