Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefahr aus dem 3-Wege-Kat: Entgiftete Autos schädigen die Pflanzenwelt

05.12.2005


Die Biologin Judith Schumacher misst beim TÜV Bonn den Gehalt von Ammoniak in Auspuffgasen. (c) AG Prof. Frahm


Die Gelbflechte (Xanthoria perietina), Flechte des Jahres 2004, zeigt Luftbelastung speziell durch Ammoniak an. (c) AG Prof. Frahm


Autos mit 3-Wege-Kat sind längst nicht sauber wie bislang gedacht. Das zeigt eine Studie von Botanikern der Universität Bonn. Demnach pusten die "entgifteten" Fahrzeuge große Mengen Ammoniak in die Luft - ein Gas, das beispielsweise bei der Viehhaltung entsteht und für den stechenden Geruch von Mist und Gülle verantwortlich ist. Dass Katalysatoren überhaupt nennenswerte Mengen Ammoniak produzieren, war bislang nahezu unbekannt. Selbst Experten gingen davon aus, dass es sich dabei allenfalls um eine zu vernachlässigende Nebenreaktion handelt - eine Fehleinschätzung, wie die Messungen der Bonner Forscher und des TÜV zeigen. Gefahren für die Gesundheit gehen von den gemessenen Konzentrationen zwar nicht aus. In der Pflanzenwelt kann das Gas jedoch starke Schäden anrichten. Schon heute wachsen an viel befahrenen Straßen Moose und Flechten, die früher vorzugsweise an den Betoneinfassungen von Misthaufen vorkamen. Andere Arten wurden dagegen weitgehend verdrängt.


Schon vor mehr als 10 Jahren war es den Botanikern komisch vorgekommen: Da wuchs plötzlich in Städten an Mauern und Bäumen ein Moos namens Orthotrichum diaphanum, das dort zuvor nie gefunden worden war. Typischerweise kommt es auf dem Land an den Betoneinfassungen von Misthaufen vor. Dort enthält die Luft viel Ammoniak, und der dient dem Moos als Stickstoff-Quelle: Eine Art Dünger aus der Luft.

Flechten aus dem "Güllegürtel"


Einige Jahre später breiteten sich in den Städten plötzlich stickstoffliebende Flechtenarten wie die Gelbflechte aus. Auch diese Arten lieben eigentlich die Landluft: Normalerweise wachsen sie beispielsweise auf Dächern von Viehställen. "In den Städten gibt es aber keine Kühe und Schweine", erklärt Professor Dr. Jan-Peter Frahm vom Bonner Nees-Institut für Biodiversität der Pflanzen. "Was bewog also die Flechten, in die Städte zu ziehen?" Dass Ammoniak der Verantwortliche sein könnte, vermutete damals niemand - woher sollte er auch stammen? Außerdem wird die Ammoniak-Konzentrationen bei Schadstoffbestimmungen normalerweise nicht mitgemessen.

Noch undurchsichtiger wurde die Geschichte, als im Jahr 2000 der Monheimer Biologe Norbert Stapper feststellte, dass die stickstoffliebenden Flechtenarten besonders gerne an stark befahrenen Straßen wachsen - je stärker der Verkehr, desto besser. "Eigentlich gelten Flechten als Indikatoren für Luftgüte", erklärt Frahm; "man sollte meinen, dass sie empfindlich auf die Auspuffgase reagieren."

Ammoniak statt Saurer Regen

Die Frage nach dem Grund ließ Frahm keine Ruhe. Im vergangenen Sommer setzte er schließlich zwei Doktoranden auf das Thema an. Experimente und Literaturrecherchen lenkten den Verdacht schnell auf die Stickstoff-Quelle Ammoniak - eine Substanz, die im Autoabgas jedoch allenfalls in minimalen Konzentrationen vorkommen sollte. "Mit Unterstützung des TÜV in Bonn haben wir dann bei 30 Fahrzeugen mit Katalysator das Abgas untersucht", erläutert Professor Frahm. Das Ergebnis überraschte selbst die Experten: "Alle Pkw pusteten Ammoniak in die Luft - und das in Konzentrationen, die man zum Teil bereits mit der Nase wahrnehmen konnte." Bis zu 25 ppm (parts per million) erreichten die Werte bereits im Leerlauf; bei höheren Drehzahlen stiegen sie gar auf das drei- bis zehnfache - die Grenze dessen, was das Messgerät nachweisen konnte.

Gefahr für die menschliche Gesundheit geht von den gemessenen Mengen dennoch nicht aus, da sich das Gas schnell verdünnt. Gefährlicher ist da schon der "Düngeeffekt" von Ammoniak: "Die Düngung ist so hoch, dass sie nur von wenigen Moos- und Flechtenarten toleriert wird", betont Frahm. "Die anderen halten das gar nicht aus." Auch Blütenpflanzen, die Stickstoff anders als Moose und Flechten nicht aus der Luft aufnehmen, sind gefährdet: Ammoniak verbindet sich nämlich mit den Stickoxiden in der Luft zu Ammoniumnitrat - das ist der Dünger, den man in jedem Gartencenter kaufen kann. Mit dem Regen gelangt der Dünger dann in den Boden. Folge: Seltene Arten sterben aus und werden durch Stickstoffanzeiger wie Brennessel oder Brombeere ersetzt. "Anders als beim Sauren Regen sterben wegen des Ammoniaks keine Bäume", sagt Frahm. Er fürchtet jedoch die schleichenden Veränderungen: "Das langfristige Resultat ist eine zunehmende Verarmung der Natur - wir leben bald in einer Güllewüste."

Kontakt:
Professor Dr. Jan-Peter Frahm
Nees-Institut für Biodiversität der Pflanzen
Telefon: 0228/73-2121 oder 0178/7982794
E-Mail: frahm@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Ammoniak Dünger Flechten Flechtenarten Konzentrationen Pflanzenwelt

Weitere Nachrichten aus der Kategorie Ökologie Umwelt- Naturschutz:

nachricht Von der Weser bis zur Nordsee: PLAWES erforscht Mikroplastik-Kontaminationen in Ökosystemen
20.09.2017 | Universität Bayreuth

nachricht Der Monsun und die Treibhausgase
18.09.2017 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie