Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Gen zur Therapie: Studie zeigt Bedeutung von Kaliumkanälen bei frühkindlichen Epilepsien

12.03.2015

Bestimmte Formen frühkindlicher Epilepsien werden durch bislang unbekannte Mutationen des Kalium‐Ionenkanal‐Gens KCNA2 ausgelöst – so das Ergebnis der aktuellen Nature Genetics‐Publikation einer europäischen Arbeitsgruppe unter Leitung von Wissenschaftlern aus Leipzig und Tübingen. Die entdeckten Veränderungen stören auf zwei Arten das elektrische Gleichgewicht im Gehirn der betroffenen Patienten: indem der Kaliumfluss entweder stark reduziert oder massiv erhöht ist. Die Ergebnisse der Studie machen jetzt Hoffnung auf neue Therapien, teilen die Deutsche Gesellschaft für Neurologie (DGN), die Deutsche Gesellschaft für Epileptologie (DGfE) und die Gesellschaft für Neuropädiatrie (GNP) mit.

Die durch die Störung des Kalium‐Ionenkanals ausgelösten frühkindlichen Epilepsien bilden ein eigenständiges Krankheitsspektrum innerhalb der sogenannten epileptischen Enzephalopathien.


Für eine Epilepsie liefern die Hirnströme den entscheidenden Beweis. Diese lassen sich mit Hilfe der Elektroenzephalografie (EEG) darstellen

Deutsche Gesellschaft für Neurologie (DGN)

Dies sind schwerwiegende Epilepsien mit Beginn im Kindesalter, mit unterschiedlich stark ausgeprägten Entwicklungsstörungen, Intelligenzminderungen und weiteren neuropsychiatrischen Symptomen, wie Autismus und Koordinationsstörungen (Ataxie).

Neue individualisierte Behandlungsmöglichkeiten

„Mit dieser überaus wichtigen Arbeit sind wir einem Ziel näher gekommen, von dem wir in der Epileptologie noch vor Kurzem weit entfernt waren: einem individualspezifischen Krankheitsverständnis und individualspezifischer rationaler Therapieansätze“, kommentiert Professor Bernhard Steinhoff von der Deutschen Gesellschaft für Neurologie, Ärztlicher Direktor am Epilepsiezentrum Kork.

Bei ihren Untersuchungen stellten die Wissenschaftler fest, dass die entdeckten genetischen Mutationen die Funktion des Kaliumkanals KCNA2 auf zwei Arten stören: Bei einigen Patienten ist der Kaliumfluss stark eingeschränkt (loss of function), während er bei anderen massiv erhöht ist (gain of function).

„Für diejenigen Patienten, bei denen der Kaliumfluss erhöht ist, ergibt sich aus den Ergebnissen der Studie eine konkrete neue Behandlungsmöglichkeit, da ein verfügbares und zugelassenes Medikament, das 4‐Aminopyridin, diesen Kanal spezifisch blockiert“, erklärt einer der Studienleiter, Professor Holger Lerche, Vorstand am Hertie‐Institut für klinische Hirnforschung (HIH) in Tübingen.

Bei dem anderen Teil der Patienten, bei denen der Kaliumfluss reduziert ist, wollen die Wissenschaftler nun durch weitere Experimente herausfinden, wie die epileptischen Anfälle genau entstehen, um daraus neue Therapiemöglichkeiten abzuleiten. „So wären wir in der Lage, zumindest einem kleinen Teil der Patienten mit epileptischen Enzephalopathien zu einer verbesserten und individualisierten Therapie zu verhelfen“, hofft Lerche. Voraussetzung für eine Behandlung sei allerdings, Gendefekte frühzeitig zu erkennen und therapeutisch einzugreifen, bevor es zu einer irreversiblen Entwicklungsverzögerung kommt.

Ionenkanäle wichtig für elektrisches Gleichgewicht im Gehirn

Die Funktionsfähigkeit des Gehirns beruht unter anderem auf dem Zusammenspiel vieler verschiedener Ionenkanäle. Sie verhindern eine überschießende Ausbreitung elektrischer Aktivität durch ein sensibles Gleichgewicht zwischen hemmenden und fördernden Einflüssen. Die Ionenkanäle – darunter auch der Kaliumkanal KCNA2 – sitzen gemeinsam mit vielen weiteren Poren und Kanälen in der Zellwand einer Nervenzelle. Durch Öffnen und Schließen bestimmt KCNA2 den Durchfluss von Kaliumionen und beeinflusst damit die elektrische Erregbarkeit der Nervenzellen im Gehirn.

„Die Entdeckung von KCNA2‐Mutationen ist ein weiterer Meilenstein, um die molekularen Mechanismen genetisch bedingter epileptischer Enzephalopathien bei Kindern zu erklären. Zudem können wir durch das zunehmende Verständnis des genetischen Hintergrunds immer besser bezüglich Prognose und Vererbung beraten, wozu diese Arbeit einen wichtigen Beitrag leistet“, bestätigt Professor Ulrich Brandl von der Gesellschaft für Neuropädiatrie, Direktor der Abteilung Neuropädiatrie am Universitätsklinikum in Jena.

Meilenstein für die Epilepsie‐Forschung

„Auch wenn man den Kaliumkanaldefekt nur bei einem kleinen Teil der Kinder, die an derartigen Epilepsien erkrankt sind, nachweisen kann: Für einige Kinder dürfte diese Studie eine ersehnte Klärung bringen – und allein die Fassbarkeit einer Ursache ist für viele Betroffene schon ein wichtiger Schritt“, kommentiert Professor Rüdiger Köhling von der Deutschen Gesellschaft für Epileptologie, Direktor des Oscar Langendorff Instituts für Physiologie. Und noch etwas zeigt die Studie aus Sicht von Professor Köhling: „Forschungsanstrengungen großer Konsortien lohnen sich – in den großen Zahlen stecken Daten, die bei Betrachtung kleinerer Patientengruppen nie gesehen würden.“

An der Studie waren zahlreiche Wissenschaftler aus unterschiedlichen Schwerpunktbereichen der Neurologie und Neuropädiatrie beteiligt, darunter das Konsortium EuroEPINOMICS. Dieses europäische Konsortium von Epilepsieforschern hat europaweit DNA‐Proben mit epileptischen Enzephalopathien und Ataxien gesammelt – bei der Auswertung der Daten von mehr als 400 Patienten wurden insgesamt sechs Mutationen gefunden.

Quelle
Syrbe, S. et. al (2015) De novo loss‐ or gain‐of‐function mutations in KCNA2 cause epileptic encephalopathy. Nature Genetics (09 March 2015) doi: 10.1038/ng.3239
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.3239.html

Gemeinsame Presseinformation der Deutschen Gesellschaft für Neurologie (DGN), der Deutschen Gesellschaft für Epileptologie (DGfE) und der Gesellschaft für Neuropädiatrie (GNP)

Kontakt bei Rückfragen

Prof. Dr. med. Holger Lerche
Ärztlicher Direktor Abt. Neurologie mit Schwerpunkt Epileptologie
Hertie Institut für Klinische Hirnforschung
Universitätsklinikum Tübingen
Hoppe‐Seyler‐Str. 3, 72076 Tübingen
E‐Mail: <silke.jakobi@medizin.uni‐tuebingen.de>
Tel.: +49 (0) 7071 29‐88800

Pressestelle der Deutschen Gesellschaft für Neurologie
Tel.: +49 (0)89 46148622, Fax: +49 (0)89 46148625, E‐Mail: presse@dgn.org
Pressesprecher: Prof. Dr. med. Hans‐Christoph Diener, Essen

Druckfähiges Bildmaterial finden Sie in der DGN‐Mediathek: http://www.dgn.org/mediathek.
Bitte beachten Sie die Nutzungsbedingungen. Das Bild zur Meldung können Sie hier direkt herunterladen (Quelle: Deutsche Gesellschaft für Neurologie): http://www.dgn.org/mediathek/download-galerie/image?view=image&format=raw&am...

Frank A. Miltner | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Wie gesund werden wir alt?
18.09.2017 | Medizinische Hochschule Hannover

nachricht Entrepreneurship-Studie: Großes Potential für Unternehmensgründungen in Deutschland
15.09.2017 | Alexander von Humboldt Institut für Internet und Gesellschaft

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften