Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller bremsen mit Gehirnwellen

15.08.2011
In einer neuen Studie identifizieren Forscher die Bremsabsicht von Autofahrern in Gehirnwellen

Zwischen dem Erkennen einer Notfallsituation beim Autofahren bis zur tatsächlichen Bremsung vergehen kostbare Sekunden und Millisekunden, die dafür entscheidend sein können, ob es zu einem Unfall kommt.

Wie sich diese kritische Zeit verkürzen lässt, haben TU-Wissenschaftler bei einem Experiment demonstriert. Dafür wurden die Hirnströme von Probanden im Fahrsimulator aufgezeichnet und die Bremsabsicht des Fahrers durch Sensoren am Kopf gelesen, bevor er auf das Bremspedal tritt. Das Ergebnis: Eine schnellere Bremsung kann ermöglicht und Autounfälle können verhindert werden.

Die TU-Forscher führten gefährliche Situationen im Fahrsimulator herbei, die eine Notbremsung erfordern, und analysierten die dabei auftretenden Gehirnstrommuster mittels Elektroenzephalographie (EEG), das heißt mit am Kopf angebrachten Elektroden. Weiterhin wurde die Muskelaktivität des rechten Schienbeines durch Elektromyographie (EMG) erfasst sowie Bewegungen der Gas- und Bremspedale. Es stellte sich heraus, dass die Bremsabsicht des Fahrers etwa 130 Millisekunden früher vorhergesagt werden kann, wenn typische EMG- und (vor allem) EEG-Muster zusätzlich zu den Informationen von den Pedalsensoren berücksichtigt werden. Damit verkürzt sich der Bremsweg bei einer Fahrgeschwindigkeit von 100 Kilometern in der Stunde um 3,66 Meter – das entspricht einer Wagenlänge.

Wissenschaftler der Technischen Universität Berlin erstellten die Studie „EEG potentials predict upcoming emergency brakings during simulated driving“ in Zusammenarbeit mit der Charité Universitätsmedizin und dem Fraunhofer Institut FIRST und veröffentlichten die Forschungsergebnisse in der Publikation „Journal of Neural Engineering“.

Zukünftige Entwicklung
Haupt-Autor Stefan Haufe vom Fachgebiet Maschinelles Lernen an der TU Berlin und seine Kollegen setzen mit dieser Forschungsarbeit sehr früh in der Reaktionskette einer drohenden Unfallsituation an. Bisherige Systeme zur Fahrassistenz überwachen zum Beispiel per Laserstrahl den Abstand zum voranfahrenden Auto und lösen eine Notbremsung aus, sobald der Fahrer das Bremspedal antippt. Das „Gedankenlesen“, beziehungsweise die EEG-basierte Erkennung der Bremsintention, greift dem voraus und könnte einen schnelleren Bremsassistenten ermöglichen.

„Im nächsten Schritt muss getestet werden, ob unser System auch online in einem echten Auto funktioniert. Um kommerziell einsetzbar zu sein, müsste die Technologie allerdings auch noch wesentlich praktikabler werden“, sagt Stefan Haufe. Momentan bauchten die EEG-Elektroden nämlich Gel: dies sei aufwändig im Gebrauch und hinterlasse Rückstände in den Haaren, so der Wissenschaftler. Doch die Lösungen sind in Sicht: „Es gibt erste ‚trockene‘ Elektroden. Gleichzeitig schreitet die Miniaturisierung der Elektroden und die Entwicklung von drahtlosen Systemen voran. So könnte unser System in einigen Jahren als Ergänzung bestehender Fahrassistenzsysteme eingeführt werden.“

Das Experiment
Für die Untersuchung saßen die Probanden in einem Fahrsimulator mit Lenkrad, Bremse und Gaspedal. Auf einem Bildschirm anstelle der Windschutzscheibe waren Bilder einer Autofahrt aus der Ich-Perspektive zu sehen. Die Versuchspersonen hatten die Aufgabe, bei einer Geschwindigkeit von 100 Kilometern in der Stunde einen Abstand von 20 Metern zu dem vorausfahrenden Computer-gesteuerten Fahrzeug einzuhalten (der allgemein empfohlene Sicherheitsabstand läge bei 50 Metern), während sie mit gefährlichen Kurven und dichtem Gegenverkehr umzugehen hatten. In unregelmäßigen Abständen bremste das vorausfahrende Auto unerwartet und seine Bremsleuchten blitzten auf. Die Wissenschaftler verglichen die Reaktionszeiten von physiologischen Indikatoren (EEG- und EMG-Muster) mit denen, die aus dem Verhalten des Fahrers (dem schnellen Loslassen des Gaspedals und dem darauffolgenden Betätigen der Bremse) ablesbar sind.

Eine solche Untersuchung im Fahrsimulator können Sie sich hier als Film ansehen: www.youtube.com/watch?v=kkKoMQwQ0yA

Die Studie zum Download: http://iopscience.iop.org/1741-2552/8/5/056001

Weitere Informationen erteilt Ihnen gern: Stefan Haufe, TU Berlin, Fakultät IV Elektrotechnik und Informatik, Fachgebiet Maschinelles Lernen, Tel.: 030/314-78626, -28678, E-Mail: stefan.haufe@tu-berlin.de

Die Medieninformation zum Download:
www.pressestelle.tu-berlin.de/medieninformationen/
„EIN-Blick für Journalisten“ – Serviceangebot der TU Berlin für Medienvertreter:
Forschungsgeschichten, Expertendienst, Ideenpool, Fotogalerien unter:
http://www.pressestelle.tu-berlin.de/?id=4608

Stefanie Terp | idw
Weitere Informationen:
http://www.tu-berlin.de
http://www.youtube.com/watch?v=kkKoMQwQ0yA
http://iopscience.iop.org/1741-2552/8/5/056001

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Wie gesund werden wir alt?
18.09.2017 | Medizinische Hochschule Hannover

nachricht Entrepreneurship-Studie: Großes Potential für Unternehmensgründungen in Deutschland
15.09.2017 | Alexander von Humboldt Institut für Internet und Gesellschaft

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik