Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse zur Tiefen Hirnstimulation

18.03.2015

Tübinger Neurowissenschaftler untersuchen in Studie die Funktionsweise der erfolgreichen Therapiemethode für Parkinsonpatienten

Tübinger Neurowissenschaftler kommen in einer neuen Studie der noch unvollständig verstandenen Funktionsweise der Tiefen Hirnstimulation (Deep Brain Stimulation – DBS) auf die Spur.

DBS wird seit den 90er Jahren vor allem bei Parkinson-Patienten als eine der erfolgreichsten Behandlungsmöglichkeiten eingesetzt. Dabei werden Patienten Elektroden implantiert, die einen tiefliegenden Hirnbereich erreichen.

Zur Therapie können elektrische Impulse verabreicht werden, die bei den meisten Patienten deutlich die Parkinson-Symptome Tremor (Zittern) und Rigor (Steifigkeit) vermindern und die Lebensqualität verbessern. Allein in Deutschland verfügen inzwischen mehr als 6.000 Patienten über einen solchen „Hirnschrittmacher“, die Operation wird zudem mehrere hundert Male im Jahr durchgeführt.

Wie die Tiefe Hirnstimulation genau wirkt, vermag die Medizin bis heute nicht sicher zu sagen. Neue Erkenntnisse zu den Grundlagen der Parkinson-Krankheit und zur Funktionsweise der Tiefen Hirnstimulation sind aber wertvoll, um die Therapie fortlaufend weiter zu entwickeln.

Die Forschergruppe um Dr. Daniel Weiss und Professor Alireza Gharabaghi am Werner-Reichardt-Centrum für Integrative Neurowissenschaften (CIN) der Universität Tübingen stellt nun einen direkten Zusammenhang zwischen der Tiefen Hirnstimulation und den (patho)physiologischen Grundlagen der Parkinson-Krankheit her.

Die Forscher untersuchten anhand von Hirnströmen (nicht-invasiv und schmerzfrei durch Oberflächen-EEG auf der Kopfhaut gemessen), wie sich die Tiefe Hirnstimulation des Nucleus Subthalamicus auf die Verschaltung und Kommunikation von Neuronengruppen des Großhirns (Kortex) auswirkt. Sie stellten fest, dass die Tiefe Hirnstimulation des Nucleus Subthalamicus die Verarbeitung von Bewegung im Großhirn wesentlich unterstützen und stärken kann.

Zudem konnten die Forscher zeigen, dass die verbesserte Leistung des Großhirns auch geeignet war, um die motorische Verbesserung der Patienten durch die Tiefe Hirnstimulation vorherzusagen. Die Normalisierung der Großhirnfunktion bei der Parkinson-Krankheit scheint also eng mit der motorischen Verbesserung verknüpft zu sein. Zudem konnten die Forscher in Zusammenarbeit mit dem US-amerikanischer Forscher Dr. Govindan zeigen, dass die Tiefe Hirnstimulation des Nucleus Subthalamicus Hirnareale dämpft, die bei der Parkinson-Krankheit übermäßig hemmend auf Bewegungsplanung und –ausführung wirken.

Die Tübinger Forscher haben damit in ihrer Arbeit wesentliche neue Funktionsmechanismen der vielfach mit sehr gutem Erfolg eingesetzten Tiefen Hirnstimulation nachgewiesen.

Über das Grundlagenverständnis der Therapiemechanismen hinaus, beinhaltet die Arbeit wertvolle Hinweise, um die Tiefe Hirnstimulation noch besser für die individuellen Bedürfnisse der Patienten zu optimieren.

Diese und weitere elektrophysiologische Biomarker können in Zukunft dazu dienen, die Tiefe Hirnstimulation noch effektiver und gezielter einzusetzen.

Optimaler Weise könnten aus der elektrischen Hirnaktivität Parkinsonsymptome bereits vorhergesagt werden, bevor sie wenige Sekunden später für den Patienten fassbar einsetzen – in der Regel gehen nämlich Anpassungen der Hirnaktivität den motorischen Symptomen und Leistungen voraus.

Die optimale Stimulation der Zukunft würde also bereits dann einsetzen, wenn die Nervenzellaktivität zwar bereits eine klinische Verschlechterung vorhersagt, diese aber noch durch elektrische Impulse behandelt werden kann, bevor sie für den Patienten überhaupt spürbar wird.

Publikation:
Daniel Weiss, Rosa Klotz, Rathinaswamy B. Govindan, Marlieke Scholten, Georgios Naros, Ander Ramos-Murguialday, Friedemann Bunjes, Christoph Meisner, Christian Plewnia, Rejko Krüger, Alireza Gharabaghi: “Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson’s Disease. Brain“: A Journal of Neurology, 1–15, 2. Januar 2015.

Kontakt:
Dr. Daniel Weiss und Prof. Dr. Alireza Gharabaghi
Universitätsklinikum Tübingen
Telefon +49 7071 29-86448
daniel.weiss[at]uni-tuebingen.de
alireza.gharabaghi[at]uni-tuebingen.de

Für allgemeine Informationen über das CIN:
Dr. Paul Töbelmann,
Universität Tübingen
Werner-Reichardt-Centrum für Integrative Neurowissenschaften (CIN)
Tel.: +49 7071 29-89108
paul.toebelmann[at]cin.uni-tuebingen.de

www.cin.uni-tuebingen.de 

Antje Karbe | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Neue Studie „Education first! Bildung entscheidet über die Zukunft Sahel-Afrikas“
29.11.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Zukunftsstudie zum Autoland Saarland veröffentlicht
29.11.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften