Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mäuse denken auch im Schlaf!

26.10.2012
Wissenschaftler des ZI fanden erstmals bei schlafenden Mäusen den Nachweis für die andauernde Aktivität in einer bestimmten Nervenzellgruppe, die eine zentrale Schaltstelle für die Gedächtnisbildung ist.

Die Studie wurde in der aktuellen Ausgabe der Fachzeitschrift Nature Neuroscience veröffentlicht. Den Wissenschaftlern gelang es, die „Konversation“ der Neurone zwischen den beteiligten Hirnregionen zu beschreiben. Genau die untersuchten Hirnareale sind auch als erste bei der Alzheimer Demenz betroffen, daher sind die Studienergebnisse von großer Bedeutung für die Erforschung dieser Erkrankung.

Das Team um Dr. Thomas Hahn, Arzt in der Klinik für Psychiatrie und Psychotherapie und Wissenschaftler am Bernstein Center for Computational Neuroscience Heidelberg - Mannheim, untersuchte im Rahmen einer BMBF-geförderten Deutsch-US-amerikanischen Kooperation in Computational Neuroscience zusammen mit Kollegen in Los Angeles die Kommunikation zwischen der Großhirnrinde und dem Hippocampus während des Tiefschlafs.

Der Hippocampus ist eine Hirnstruktur in der verschiedene sensorische Systeme verarbeitet werden und die wichtig ist für die Gedächtniskonsolidierung, also die Überführung von Inhalten aus dem Kurzzeit- in das Langzeitgedächtnis. Im Mittelpunkt des Interesses der Forscher stand der Entorhinale Kortex. Dieser bildet im Netzwerk der Gedächtnisbildung die zentrale Schnittstelle zwischen der Großhirnrinde und dem Hippocampus und ist somit an verschiedenen Arten von Erinnerung (beispielsweise an dem autobiographischen und dem episodischen Gedächtnis) beteiligt.

Während des Tiefschlafs zeigt die Großhirnrinde zu 90 Prozent der Zeit ein langsames Wellenmuster mit einem regelmäßigen etwa sekündlichen Wechsel vom aktiven zum inaktiven Zustand. Die Forscher maßen nun die elektrische Aktivität gleichzeitig in der Großhirnrinde, im Hippocampus und in jenem Teil des Entorhinalen Kortex, der Informationen vom Großhirn erhält und diese in den Hippocampus weiterleitet.

Die Nervenzellen im Entorhinalen Kortex verhalten sich dabei ganz anders als bisher angenommen. Sie werden, wie erwartet, aktiv wenn sie von der Großhirnrinde Input bekommen. Doch wenn die Großhirnrinde wieder inaktiv wird, bleiben die Neurone des Entorhinalen Kortex in einem aktiven Zustand, als ob sie sich an etwas „erinnern“, das die Großhirnrinde gerade gesagt hat. Diesen Vorgang der anhaltenden Aktivierung nennen die Forscher Persistierende Aktivität. Diese spontane Persistenz beeinflusste daraufhin auch stark den Hippocampus. Andererseits weist der Hippocampus geringere Aktivität auf, wenn die Großhirnrinde aktiv ist. Somit entkoppeln die untersuchten Nervenzellen die Großhirnrinde vom Hippocampus, was man zwar bereits lange wusste, aber bisher nicht erklären konnte.

Die Ergebnisse der Studie könnten dazu führen, die bisherigen Theorien über das Arbeitsgedächtnis und die Gedächtnisbildung im Schlaf zu überdenken. Die untersuchten Neurone gehören zu jener Gruppe von Nervenzellen, die als erste bei der Alzheimer Demenz zugrunde gehen, somit könnten sich aus der weiteren Untersuchung der Persistenz und damit zusammenhängender Prozesse neue Ansatzpunkte zum besseren Verständnis der Alzheimer Demenz ergeben.

Kontakt:
Dr. Thomas Hahn
Zentralinstitut für Seelische Gesundheit
Klinik für Psychiatrie und Psychotherapie
Bernstein Center for Computational Neuroscience Heidelberg / Mannheim
J5, 68159 Mannheim
Tel.: 0621 1703-0
E-Mail: thomas.hahn@zi-mannheim.de
www.zi-mannheim.de
www. bccn-heidelberg-mannheim.de
Beteiligte Zentren
Department of Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.
Thomas T G Hahn & Sven Berberich
Behavioral Neurophysiology Group, Max Planck Institute for Medical Research, Heidelberg, Germany.
Thomas T G Hahn & Sven Berberich
Department of Physics, Brown University, Providence, Rhode Island, USA.
James M McFarland
Department of Physics and Astronomy, Keck Center for Neurophysics, and Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, California, USA.
James M McFarland & Mayank R Mehta
Department of Neurobiology, Max Planck Institute for Neurobiology, Munich, Germany.
Bert Sakmann
Departments of Neurology and Neurobiology, University of California, Los Angeles, Los Angeles, California, USA.

Mayank R Mehta

Publikation
Spontaneous persistent activity in entorhinal cortex modulates cortico-hippocampal interaction in vivo
Thomas T G Hahn1,2,7, James M McFarland3,4,7, Sven Berberich1,2, Bert Sakmann 5 & Mayank R Mehta4,6.
1Department of Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany. 2Behavioral Neurophysiology Group, Max Planck Institute for Medical Research, Heidelberg, Germany. 3Department of Physics, Brown University, Providence, Rhode Island, USA. 4Department of Physics and Astronomy, Keck Center for Neurophysics, and Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, California, USA. 5Department of Neurobiology, Max Planck Institute for Neurobiology, Munich, Germany. 6Departments of Neurology and Neurobiology, University of California, Los Angeles, Los Angeles, California, USA. 7.

Nature Neuroscience, published online 7 October 2012; doi:10.1038/nn.3236

Sigrid Wolff | idw
Weitere Informationen:
http://www.zi-mannheim.de
http://www. bccn-heidelberg-mannheim.de

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Dialysepatienten besser vor Lungenentzündung schützen
17.01.2018 | Deutsches Zentrum für Infektionsforschung

nachricht Neue Studie der Uni Halle: Wie der Klimawandel das Pflanzenwachstum verändert
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie

Elektrische Felder steuern Nano-Maschinen 100.000-mal schneller als herkömmliche Methoden

19.01.2018 | Energie und Elektrotechnik