Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie kalt wird ein Winter in zwei Jahren?

04.12.2012
Neue Studie zeigt: Klimamodelle tun sich noch schwer mit mittelfristigen Klimaprognosen

Wie gut sind die weltweit wichtigsten Klimamodelle geeignet, um die Wetterbedingungen für das kommende Jahr oder gar Jahrzehnt vorherzusagen? Die Potsdamer Wissenschaftler Dr. Dörthe Handorf und Prof. Dr. Klaus Dethloff vom Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft (AWI) haben 23 Klimamodelle getestet und ihre Ergebnisse in der aktuellen Ausgabe der internationalen Fachzeitschrift Tellus A veröffentlicht.

Ihr Fazit: Der Weg zu verlässlichen regionalen Vorhersagen auf saisonalen und dekadischen Zeitskalen ist noch weit. Keines der getesteten Modelle ist heute schon in der Lage, die wetterbestimmenden Muster von Hoch- und Tiefdruckgebieten so gut vorauszuberechnen, dass die Wahrscheinlichkeit eines kalten Winters oder eines trockenen Sommers verlässlich prognostiziert werden kann.

Wie sich der globale Klimawandel regional und mittelfristig auswirken wird, gehört aktuell zu den wichtigsten Fragen der Klimaforschung. Diese sind Gegenstand nationaler und internationaler Forschungsprogramme und werden auch im nächsten Weltklimabericht eine große Rolle spielen. Denn Gesellschaften, die sich auf klimatische Änderungen einstellen müssen, sollten wissen, welche konkreten Veränderungen auf sie zukommen.

Für die Energie- oder Landwirtschaft beispielsweise wäre es ein enormer Gewinn, wenn die mittelfristig vorherrschenden Wetterbedingungen in einer Region einigermaßen verlässlich prognostiziert werden könnten. Vor diesem Hintergrund ist die Vorhersagequalität gängiger Klimamodelle für den Zeitraum von Jahreszeiten bis hin zu einem Jahrzehnt von großer Bedeutung.

Das Wettergeschehen auf der Erde wird ganz wesentlich von großräumigen Zirkulationsmustern der Atmosphäre bestimmt. Ein Beispiel ist die nordatlantische Oszillation. Sie beeinflusst Stärke und Lage der Westwinde über dem Nordatlantik und legt damit die Zugbahnen der Tiefdruckgebiete über Nord- und Mitteleuropa fest.

Solche auch als „Telekonnektion“ bezeichneten Zirkulationsmuster sind über die gesamte Erde verteilt und bestimmen die räumliche und zeitliche Verteilung von Hoch- und Tiefdruckgebieten über große Entfernungen hinweg. Wissenschaftler sprechen dabei von der Ausbildung „meteorologischer Aktionszentren“, die das Wetter einer ganzen Region prägen. Im Fall der nordatlantischen Oszillation sind das zum Beispiel die bekannten Wetterzentren „Islandtief“ und „Azorenhoch“.

„Kurzfristige Wettervorhersagen sind mittlerweile sehr verlässlich. Die Probleme für saisonale und dekadische, also mittelfristige Vorhersagen sind die enorme Variabilität und die vielfältigen Rückkopplungseffekte, denen die atmosphärische Zirkulation unterliegt“, erläutert AWI-Meteorologin Dörthe Handorf die besondere Herausforderung für Modellierer.

Um die Vorhersagequalität der 23 wichtigsten Klimamodelle zu testen, haben die AWI-Wissenschaftler überprüft, wie gut diese Modelle die großräumigen Zirkulationsmuster der vergangenen 50 Jahre reproduzieren können. Insgesamt wurden 9 bekannte Zirkulationsmuster rückblickend untersucht, vier davon besonders eingehend. Ergebnis: Die räumliche Verteilung atmosphärischer Zirkulationsmuster wird von einigen Modellen bereits sehr gut beschrieben. Wie stark oder schwach Islandtief, Azorenhoch und andere meteorologische Aktionszentren zu einem bestimmten Zeitpunkt der letzten 50 Jahre ausgeprägt waren, die zeitlichen Verteilungsmuster also, konnte allerdings keines der Modelle zufriedenstellend reproduzieren.

„Gegenwärtig arbeiten Klimaforscher in aller Welt daran, die Auflösung ihrer Modelle und die Leistungsfähigkeit von Klimarechnern zu erhöhen“, beschreibt AWI-Forscherin Dörthe Handorf eine naheliegende und wichtige Möglichkeit, um die mittelfristige Vorhersagequalität von Klimamodellen weiter zu verbessern. Dadurch können klimatische Veränderungen räumlich und zeitlich kleinskaliger abgebildet werden. „Es wird aber nicht reichen, die reine Computer-Power zu erhöhen“, o die Potsdamer Wissenschaftlerin, die sich bereits seit 1997 mit Fragen der Klimavariabilität beschäftigt. „Wir müssen weiter daran arbeiten, die grundlegenden Prozesse und Wechselwirkungen in diesem komplizierten System „Atmosphäre“ zu verstehen. Denn auch ein Hochleistungsrechner kommt an seine Grenzen, wenn die mathematischen Gleichungen eines Klimamodells die wirklichen Zusammenhänge nicht exakt genug beschreiben.“

Eine Schlüsselrolle für die Optimierung von Klimamodellen spielt die Arktis. Sie gehört zu den wichtigsten Motoren des Klima- und Wettergeschehens, ist gleichzeitig eine der Regionen, in denen das Klima sich gegenwärtig am stärksten verändert. Gleichzeitig ist der Hohe Norden noch immer so unwirtlich, dass viel zu wenig Daten über die Arktis existieren. Künftige Forschungsarbeiten der Potsdamer Wissenschaftler gehen deshalb in zwei Richtungen. Zum einen entwickeln sie ein Klimamodell, das die oft kleinskaligen, wetterbestimmenden Prozesse in der Arktis besonders gut auflösen kann. Das Projekt namens TORUS wird im Rahmen des Forschungsprogrammes „MiKlip-Mittelfristige Klimaprognosen“ vom Bundesministerium für Bildung und Forschung (BMBF) gefördert und von Dörthe Handorf koordiniert. Da Modellverbesserungen aber nur möglich sind, wenn umfangreiche Datensätze in hoher Qualität vorliegen, ist für den Zeitraum 2018-2019 eine große internationale Messkampagne in der Arktis geplant. Sie wird den beteiligten Wissenschaftlern einiges abverlangen. Denn Teil der Messkampagne soll eine internationale arktische Driftstation sein, bei der ein Forscherteam im arktischen Winter mehrere Monate mit dem Meereis durchs Nordpolarmeer treibt.

Hinweise für Redaktionen:
Der Originalartikel heißt: Handorf, D. and K. Dethloff: How well do state-of-the-art Atmosphere-Ocean general circulation models reproduce atmospheric teleconnection patterns?, Tellus A, 2012, 64, 19777, (doi: 10.3402/tellusa.v64i0.19777), http://www.tellusa.net/index.php/tellusa/article/view/19777

Ihre wissenschaftlichen Ansprechpartner am Alfred-Wegener-Institiut sind Dr. Dörthe Handorf (Tel: +49 (0)331 288-2131, E-Mail: Doerthe.Handorf(at)awi.de ) und Prof. Dr. Klaus Dethloff (Tel.: +49 (0)331 288-2104, E-Mail: Klaus.Dethloff(at)awi.de). In der Abteilung Kommunikation und Medien des Alfred-Wegener-Institutes steht Ralf Röchert (Tel.: +49 (0)471 4831-1680; E-Mail: Ralf.Roechert(at)awi.de) für Rückfragen zur Verfügung. Druckbare Bilder finden Sie unter http://www.awi.de/de/aktuelles_und_presse/pressemitteilungen/.

Folgen Sie dem Alfred-Wegener-Institut auf Twitter (https://twitter.com/AWI_de) und Facebook (http://www.facebook.com/AlfredWegenerInstitut). So erhalten Sie alle aktuellen Nachrichten sowie Informationen zu kleinen Alltagsgeschichten aus dem Institutsleben.

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren und hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Ralf Röchert | idw
Weitere Informationen:
http://www.awi.de

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Personalisierte Medizin – Ein Schlüsselbegriff mit neuer Zukunftsperspektive
14.07.2017 | Institut für Bioprozess- und Analysenmesstechnik e.V.

nachricht Enterprise 2.0 ist weiterhin bedeutendes Thema in Unternehmen
03.07.2017 | Hochschule RheinMain

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten