Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ist die heutige Zirkulation im Arktischen Ozean eine Ausnahme?

03.12.2007
Die Zirkulation im Arktischen Ozean, wie wir sie heute kennen, stellt, verglichen mit der geologischen Vergangenheit, eine Ausnahmesituation dar.

Dies zeigten Wissenschaftler des Leibniz-Instituts für Meereswissenschaften (IFM-GEOMAR) in Kiel anhand von geochemischen Analysen an Meeressedimenten aus dem zentralen Arktischen Ozean. Während des überwiegenden Teils der letzten 15 Millionen Jahre wurde demnach die Zirkulation stark durch die Bildung von Meereis beeinflusst und nicht, wie heute, durch einfließendes Wasser aus dem Atlantik bestimmt.

Das legt auch nahe, dass das Bildungsgebiet des Nordatlantischen Tiefenwassers, das für die globale Zirkulation und den Wärmeaustausch zwischen niedrigen und hohen Breiten von großer Bedeutung ist, in diesen Zeiten weiter im Süden lag und den Arktischen Ozean daher nicht so stark beeinflussen konnte.

Die Studie erscheint am 2. Dezember online in der neuen Fachzeitschrift "Nature Geoscience".

Der Arktische Ozean steht nur in begrenztem Austausch mit dem globalen Ozean, wobei die Framstraße zwischen Grönland und Svalbard die einzige Tiefenwasserverbindung zum Atlantischen Ozean darstellt. Hauptsächlich über diesen Weg wird der tiefe Arktische Ozean heute mit Sauerstoff versorgt. Heute verhindert eine ausgeprägte und stabile Süßwasser-Schicht an der Oberfläche des Arktischen Ozeans, die durch die großen russischen Flüsse erzeugt wird, die Tiefenwasserbildung im Arktischen Ozean selbst nahezu vollständig. Die Ergebnisse von Dr. Brian Haley und Kollegen vom IFM-GEOMAR zeigen nun, dass diese Situation im überwiegenden Teil der vergangenen 15 Millionen Jahre nicht die Regel sondern eher die Ausnahme war.

Die Kieler Forscher machten ihre Entdeckung, als sie geochemische Analysen an Sedimenten der Arctic Coring Expedition (ACEX, Leg 302 des Integrated Ocean Drilling Programms (IODP)) und einer Polarstern Expedition durchführten, die nahe des Nordpols auf dem Lomonosov-Rücken in 1000-1200 m Wassertiefe gewonnen worden waren. Sie rekonstruierten das Meerwasser-Isotopenverhältnis des Elements Neodym (143Nd/144Nd) in der Vergangenheit aus den Sedimenten. Das Neodym, das in Gesteinen abhängig von deren Alter und Typ charakteristische Isotopenverhältnisse hat, wird durch Verwitterung in den Ozean transportiert und liefert dort Informationen über die Herkunft von Wassermassen. Zu ihrer Überraschung stellten die Geochemiker fest, dass die Isotopen-Signatur des Meerwassers der letzten 15 Millionen Jahre, mit Ausnahme der Ablagerungen aus den Warmzeiten der letzten 400.000 Jahre, sehr stark unterschiedlich zum heutigen Signal war. "Noch erstaunlicher ist", so Dr. Brian Haley, Erstautor der Studie vom IFM-GEOMAR, "dass diese Signatur auf einen starken Einfluss der Verwitterung basaltischer Gesteine hinwies. Solche Gesteine existieren jedoch in den Landmassen um die Arktis herum ausschließlich in Form der sibirischen 'Putorana-Flutbasalte'".

Aus dieser geologisch einmaligen Situation konnten, zusammen mit Rekonstruktionen der kontinentalen Eisbedeckung der letzten 140.000 Jahre, Rückschlüsse über die Strömungsgeschichte des tiefen Arktischen Ozeans gezogen werden. Die Basaltsignatur kann nur dadurch in den tiefen Arktischen Ozean gelangt sein, dass sich in Kaltzeiten große Mengen neuen Meereises nahe den Basaltgebieten in der Karasee gebildet haben. Wie kam das Signal zum Meeresboden? "Bei der Eisbildung "friert" das Salz aus, und es entstehen extrem salzhaltige Lösungen, die dichter als das umgebende Meerwasser sind. Diese sinken in die Tiefe ab und transportieren dabei die gelöste Neodym-Signatur der Basalte zum Meeresboden, wo die Sedimentkerne gewonnen wurden", erklärt Prof. Martin Frank, Co-Autor der Studie. Ferner lassen die gemessenen Isotopenverhältnisse nur den Schluss zu, dass der Einstrom Atlantischen Wassers in den Arktischen Ozean während des größten Teils der letzten 15 Millionen Jahre und während der Eiszeiten der letzten 400.000 Jahre im Vergleich zu heute stark erniedrigt war. Dies legt nahe, dass das Zentrum der Atlantischen Tiefenwasserbildung in diesen Zeiten nicht wie heute in der Norwegisch-Grönländischen See, sondern weiter südlich lag.

Kontakt:
Dr. Brian Haley (nur für englischsprachige Anfragen), Tel. 0431 - 600 2252, bhaley@ifm-geomar.de
Prof. Dr. Martin Frank, Tel. 0431 - 600 2218, mfrank@ifm-geomar.de
Dr. Andreas Villwock (Öffentlichkeitsarbeit), Tel. 0431 - 600 2802, avillwock@ifm-geomar.de
Weitere Informationen:
Die Veröffentlichung in "Nature Geoscience" vom 2.12.2007 (gedruckte Version im Januar 2008) trägt den Titel:
"Influence of brine formation on Arctic Ocean circulation over the past 15 million years"
Brian A. Haley1, Martin Frank1, Robert F. Spielhagen1,2, Anton Eisenhauer1
1 Leibniz Institute of Marine Sciences at the University of Kiel (IFM-GEOMAR), Kiel, Germany.

2 Academy of Sciences, Humanities and Literature, Mainz, Germany

Dr. Andreas Villwock | idw
Weitere Informationen:
http://www.nature.com/ngeo
http://www.ifm-geomar.de/index.php?id=995

Weitere Berichte zu: Arktischen Gestein IFM-GEOMAR Ozean Zirkulation

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Ab ins Ungewisse: Über das Risikoverhalten von Jugendlichen
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht Der Klang des Ozeans
12.01.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie