Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lernen im Schlaf?

21.11.2006
Wenn ich heute Morgen nicht mehr weiß, wo ich gestern Abend die Autoschlüssel hingelegt habe, hat die Erinnerung mal wieder versagt. Wie sich diese möglicherweise verfestigt, haben nun Wissenschaftler des Max-Planck-Instituts für Medizinische Forschung in Heidelberg untersucht. Ihre neue Studie bietet den bisher stärksten Beleg dafür, dass neue Informationen während des Schlafs zwischen dem Kurzzeitgedächtnisareal Hippocampus und der Großhirnrinde übertragen werden. Entgegen bisheriger Annahmen steuert nach ihren Erkenntnissen die Großhirnrinde diesen Transfer aktiv. Die Forscher entwickelten für ihre Untersuchungen eine neue Technik, die bislang nicht mögliche Einblicke in die noch weitgehend unterforschte Informationsverarbeitung des Gehirns erwarten lässt (Nature Neuroscience, November 2006).

Die Frage, wie das Gehirn Erinnerungen speichert oder verwirft, ist nach wie vor nur in Ansätzen geklärt. Viele Hirnforscher halten die Konsolidierungstheorie für den bislang besten Erklärungsansatz. Diese besagt, dass frische Eindrücke zuerst im Hippocampus als Kurzzeitgedächtnis abgelegt werden. Sie sollen dann innerhalb von Stunden oder wenigen Tagen - vornehmlich während des Tiefschlafs - in die Großhirnrinde und dort ins Langzeitgedächtnis übergehen.


Bild eines hippocampalen Interneurons mit dazugehörigen elektrischen Messungen. Man erkennt den Zellkörper mit perlschnurartigen Dendriten und das dünne, sich netzartig verzweigende Axon. Die Spuren zeigen, dass das Membranpotential der gezeigten hippocampalen Nervenzelle (rot) und das gleichzeitig in der Großhirnrinde aufgenommene lokale Feldpotential (blau) fast im Gleichtakt schwanken. Dieser Fund stellt die bislang deutlichste Interaktion der beiden Hirnareale dar

Bild: Max-Planck-Institut für Medizinische Forschung

Untersuchungen von Thomas Hahn, Mayank Mehta und Nobelpreisträger Bert Sakmann vom Max-Planck-Institut für Medizinische Forschung in Heidelberg werfen jetzt neues Licht auf die Mechanismen der Gedächtnisbildung. Nach ihren Erkenntnissen arbeiten die Hirnbereiche zwar zusammen, aber möglicherweise anders als bisher angenommen. "Diese technisch ausgefeilte Studie könnte beträchtlichen Einfluss auf unser Verständnis von Nervenzellinteraktion während der Konsolidierung im Schlaf haben", bestätigt auch Edvard Moser, Direktor des Zentrums für Biologie des Gedächtnisses in Trondheim, Norwegen.

Die Vorgänge im Gehirn, die der Gedächtnisbildung zugrunde liegen, sind experimentell bisher schwierig zu untersuchen. Die Heidelberger Wissenschaftler entwickelten eigens einen neuartigen experimentellen Ansatz. Damit gelang es ihnen, bei narkotisierten Mäusen das Membranpotenzial von einzelnen Neuronen, die die Aktivität des Hippocampus hemmen (Interneurone) zu messen. Gleichzeitig zeichneten sie das Feldpotenzial von tausenden Nervenzellen der Großhirnrinde auf. So konnten sie das Verhalten der einzelnen Nervenzelle in Zusammenhang mit dem der Großhirnrinde stellen. Die Forscher fanden heraus, dass die untersuchten Interneurone nur mit kleinem Verzug, also fast im Gleichtakt mit dem Feldpotenzial der Großhirnrinde aktiv sind - wie ein Echo.

Ein überraschender Befund, denn die Interneurone hemmen so gerade in Phasen hoher Aktivität der Großhirnrinde jene Neurone im Hippocampus, welche die Informationen in die Grosshirnrinde schreiben sollen. Laut Mayank Mehta kann das Ergebnis auf sehr verschiedene Art und Weise interpretiert werden: "Entweder der Mechanismus trägt zur Gedächtniskonsolidierung bei, oder aber der Informationstransfer vom einen zum anderen Teil des Gehirns findet während des Schlafs gar nicht so statt wie angenommen." Welche mögliche Erklärung zutrifft, wollen die Hirnforscher nun ergründen.

In jedem Fall können die Wissenschaftler mit der neuen experimentellen Methode vielen weiteren offenen Fragen der Hirnforschung nachgehen. Thomas Hahn betont: "Setzt man das Verhalten eines einzelnen Neurons in den Kontext von großräumigen Aktivitätsmustern, verspricht das ganz neue Einblicke in die Organisationsprinzipien unseres Gehirns."

Originalveröffentlichung:

Thomas T. G. Hahn, Bert Sakmann & Mayank R. Mehta
Phase-locking of hippocampal interneurons’ membrane potential to neocortical up-down states

Nature Neuroscience, November (2006)

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Großhirnrinde Hippocampus Interneurone Neuron

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Europaweite Studie zu „Smart Engineering“
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht Diabetesmedikament könnte die Heilung von Knochenbrüchen verbessern
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE