Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jülicher Forscher untersuchen Ursachen für Farbenblindheit

30.01.2004


Wenn die Welt farblos ist



Nachts sind alle Katzen grau, doch mit der Morgendämmerung werden sie wieder farbig. Für Menschen mit angeborener Farbenblindheit - Achromatopsie - erscheint die Welt immer in Grautönen, ähnlich einem Schwarz-Weiß-Film. Bisher war bekannt, dass Farbenblindheit durch Mutationen in Genen entsteht. Dieses führt zu einer Fehlfunktion in bestimmten Lichtsinneszellen - den Zapfen. Jetzt haben Wissenschaftler des Forschungszentrums Jülich und der Universitäts-Augenklinik Tübingen herausgefunden, dass ein Ionenkanal im Zapfen bei Farbenblinden andere Eigenschaften zeigt als bei Gesunden. Die Forscher vermuten, dass der Einstrom von Kalziumionen durch diesen Kanal in die Zelle gestört ist und deshalb die Zapfen weniger lichtempfindlich sind. Lichtreize können nicht mehr optimal verarbeitet werden. Die Ergebnisse sind in der Januar-Ausgabe des "Journal of Neuroscience" veröffentlicht.



In der Netzhaut des Auges kommen zwei Gruppen von Photorezeptoren vor, die Zapfen und die Stäbchen. Die Zapfen sind für das Sehen bei Tageslicht und für das Farbsehen zuständig. Stäbchen ermöglichen das Sehen in der Dämmerung. Bei Menschen mit Farbenblindheit - nicht zu verwechseln mit der Rot-Grün-Blindheit - arbeiten nur die Stäbchen einwandfrei. Bei Tageslicht offenbart sich die erblich bedingte Sehstörung: Die Betroffenen können keine oder fast keine Farben erkennen, leiden unter mangelnder Sehschärfe und sind extrem blendempfindlich. Für sie ist intensives Licht oft schmerzhaft.

Lichtreize werden im Auge von den Photorezeptoren in elektrische Impulse umgewandelt. Dazu sitzen Ionenkanäle in den Zellmembranen der Zapfen und lassen im geöffneten Zustand Natrium- und Kalziumionen ins Innere der Zellen. Der Kanal wird von einem zellulären Botenstoff gesteuert. Im Dunkeln ist die Konzentration dieses Botenstoffes hoch und die Ionenkanäle sind geöffnet. Im Licht wird der Botenstoff abgebaut, die Ionenkanäle schließen und lassen keine geladenen Teilchen mehr ins Zellinnere. Dadurch ändert sich die elektrische Spannung an der Membran. Die Zapfen wandeln diese Spannungsänderung schließlich in ein chemisches Signal um, das von nachgeschalteten Zellen in der Netzhaut weiterverarbeitet wird.

Die Jülicher Wissenschaftler Dr. Dimitri Tränkner, Dr. Reinhard Seifert und Prof. U. Benjamin Kaupp untersuchten, welche Eigenschaften der Ionenkanal von Farbenblinden hat und wie er sich von dem eines Gesunden unterscheidet. Die Biophysiker vom Institut für Biologische Informationsverarbeitung (IBI 1) befassten sich mit einer besonderen Form der Achromatopsie, die bei zwei Schwestern auftritt. Beide können kräftige, gesättigte Farben gut erkennen und unterscheiden, sie verwechseln jedoch blasse Farben (Pastelltöne).

Die Ionenkanäle in den Zapfen sind aus A- und B- Untereinheiten aufgebaut. Zwei Gene sind für den Bauplan verantwortlich. Achromatopsie entsteht durch Mutationen in diesen Genen. In Zusammenarbeit mit Wissenschaftlern der Universitäts-Augenklinik Tübingen gelang es den Jülicher Forschern, die Ionenkanäle der Schwestern nachzubauen. "Dazu haben wir die Gene der gesunden und mutierten Kanäle in Ammenzellen eingeschleust und konnten dort die menschlichen Kanäle sehr genau untersuchen", erläutert Tränkner die Vorgehensweise. "Mit einer feinen Glaspipette habe ich Membranflecken isoliert, welche die Kanäle enthielten, Botenstoff dazugegeben und die elektrischen Ströme gemessen." Die Wissenschaftler bauten zunächst funktionsfähige Ionenkanäle nur aus mutierten A-Untereinheiten auf. Diese besaßen stark veränderte Eigenschaften gegenüber gesunden Kanälen. Im nächsten Schritt gaben die Wissenschaftler die B-Untereinheit dazu. Bis auf eine Ausnahme wurden nun alle veränderten Eigenschaften durch diesen Baustein wieder aufgehoben. "Das Ergebnis hat uns überrascht", erklärt Dimitri Tränkner. "Umso mehr, da sich der Kanal aus drei mutierten A-Untereinheiten und nur einer gesunden B-Untereinheit zusammensetzt. Das erklärt jedoch, warum die beiden Schwestern nur an einer milden Ausprägung der Farbenblindheit leiden."

Der Ionenkanal aus den Patienten unterschied sich von dem Gesunder nur noch durch eine geringere Bindungsstärke für Kalziumionen. Die Kalziumionen konnten den Ionenkanal schneller passieren, so dass der Ionenstrom größer war als in normalen Kanälen. "Wir haben dann diskutiert, welche Auswirkungen diese Eigenschaft für Zapfen haben könnte", erläutert der Biologe. Kalzium ist wichtig für die Sinneszellen, weil es die Lichtempfindlichkeit reguliert. Durch diese veränderte Eigenschaft des Ionenkanals ist der Kalzium-Haushalt in der Zelle gestört. Außerdem kommt es zu größeren Stromschwankungen in den Zapfen der Patienten. Um dieses Stromrauschen zu überwinden, sind höhere Lichtreize nötig, um die Sehzellen zu erregen. Die Zapfen benötigen mehr Licht und eine höhere Farbintensität, um Farbkontraste entstehen zu lassen. "Das könnte erklären, warum die Schwestern nur gesättigte Farben unterscheiden und zuordnen können", fasst Dimitri Tränkner die Überlegungen zusammen.

Peter Schäfer | idw
Weitere Informationen:
http://www.fz-juelich.de/portal/angebote/pressemitteilungen

Weitere Berichte zu: Botenstoff Farbenblindheit Gen Ionenkanal Kalziumion Kanal

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Erste großangelegte Genomstudie prähistorischer Skelette aus Afrika
27.09.2017 | Max-Planck-Institut für Menschheitsgeschichte / Max Planck Institute for the Science of Human History

nachricht Wie gesund werden wir alt?
18.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik