Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

So funktioniert der Hirnschrittmacher bei Parkinson

11.06.2008
Charité-Studie klärt bislang unbekannten Wirkungsmechanismus

Eine Studie der Charité - Universitätsmedizin Berlin und des Institute of Neurology London erklärt jetzt erstmals, wie es zu den positiven Effekten der tiefen Hirnstimulation bei Morbus Parkinson-Patienten kommt.

Diese Therapie wird seit Beginn der 90er Jahre eingesetzt und verbessert unter anderem deutlich die krankheitsbedingte Bewegungsarmut. Wie der Wirkungsmechanismus genau funktioniert, wurde bislang nur gemutmaßt.

Klarheit bringt die im Fachblatt Journal of Neuroscience* veröffentlichte Studie der Arbeitsgruppe um Prof. Andrea Kühn von der Klinik für Neurologie am Campus Virchow-Klinikum: Die elektrischen Impulse schwächen nachweislich - stellvertretend für den krankheitsbedingt mangelnden Botenstoff Dopamin - die rhythmische Aktivität einer Gruppe von Nervenzellen im so genannten subthalamischen Kern, einer Ansammlung von Nervenzellen in tiefer gelegenen Hirnstrukturen. Bei Parkinson-Patienten synchronisieren Nervenzellen ihre Aktivität, was zum Symptom der Verlangsamung, der so genannten Akinese, führt. Die aktuelle Studie belegt, dass der Hirnschrittmacher genau diesen Prozess einschränkt.

Zur Therapie mit tiefer Hirnstimulation werden Elektroden über ein kleines Loch in der Schädeldecke in den tiefen Hirnbereich eingeführt und dann mit einem externen Gerät durchgehend stimuliert. Für die Studie sind elf Patienten, die sich für einen Hirnschrittmacher entschieden hatten, ausgewählt worden. Nach der Operation wurden sie über die implantierten Elektroden jeweils drei Minuten lang mit hochfrequenten elektrischen Impulsen stimuliert.

Unmittelbar im Anschluss daran wurde die rhythmische Aktivität der Nervenzellen an der behandelten Stelle, dem subthalamischen Kern, gemessen. Das Ergebnis: Die Nerven waren deutlich weniger synchronisiert als ohne die Behandlung. Mit zunehmendem Zeitabstand nahm die "Gleichschaltung" wieder zu.

Dementsprechend hat sich auch die Beweglichkeit wieder verschlechtert. Dies wurde geprüft, indem die Patienten während des Tests die Hände bewegten. Wird die Stimulation - wie es der Hirnschrittmacher vorsieht - kontinuierlich durchgeführt, bleibt auch der positive Effekt bestehen.

Morbus Parkinson ist eine der häufigsten neurologischen Erkrankungen, die meist erst in höherem Lebensalter auftritt. Typische Symptome sind Verlangsamung von Bewegungsabläufen, Zittern und Muskelverspannung. Ursache hierfür ist das Absterben von Zellen in der so genannten schwarzen Substanz im Mittelhirn.

Dadurch entsteht ein Mangel des Botenstoffes Dopamin, aus dem sich letztlich die krankheitsbedingten Symptome ergeben. James Parkinson hat die Krankheit erstmals 1817 als "Schüttellähmung" beschrieben.

* Kühn et al., High-Frequency Stimulation of the Subthalamic Nucleus Suppresses Oscillatory b Activity in Patients with Parkinson's Disease in Parallel with Improvement in Motor Performance, The Journal of Neuroscience, June 11, 2008, 28(24), 6165-6173.

Kontakt:
Prof. Andrea Kühn
Leiterin der Arbeitsgruppe Bewegungsstörungen
Klinik für Neurologie
Charité - Universitätsmedizin Berlin
t: +49 30 450 660 203
andrea.kuehn@charite.de

Kerstin Endele | idw
Weitere Informationen:
http://www.charite.de

Weitere Berichte zu: Hirnschrittmacher Nervenzelle Parkinson

Weitere Nachrichten aus der Kategorie Studien Analysen:

nachricht Europaweite Studie zu „Smart Engineering“
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht Diabetesmedikament könnte die Heilung von Knochenbrüchen verbessern
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

Alle Nachrichten aus der Kategorie: Studien Analysen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE