Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zukünftig auf demselben Chip: Daten speichern und verarbeiten

13.12.2010
In der Fachzeitschrift «Nature Materials» berichten Forscher von Queen Mary (ein College der University of London), der Universität Freiburg (Schweiz) und des Paul Scherrer Instituts (PSI), wie es ihnen gelungen ist, magnetisch polarisierte Elektronen mit elektrischen Feldern zu beeinflussen.

Diese wichtige Entdeckung könnte es ermöglichen, die Eigenschaften von Elektronen in einem Computerchip gleichzeitig für Verarbeitung und Speicherung von Daten zu nutzen. Die bisherige räumliche Trennung von Speicher- und Rechenchip würde entfallen. In Zukunft könnte dies die Entwicklung erheblich sparsamerer und leichterer elektronischer Geräte aller Art ermöglichen.

Die sogenannte «Spintronik» (aus den Worten Spin und Elektronik) gehört zum Forschungsgebiet der Nanoelektronik und hat sich rasch zu einer global verwendeten Technik für Computerfestplatten entwickelt. Elektronische Bauteile, die abwechselnd aus dünnen magnetischen und unmagnetischen Schichten bestehen, nutzen die magnetischen Eigenschaften – den Spin – der Elektronen, um Daten und Informationen, die auf einer Festplatte gespeichert sind, auszulesen.

Grundlage dafür ist der physikalische Effekt «Riesen-Magneto-Widerstand» (oder GMR-Effekt), der die Entwicklung neuer Leseköpfe für kleine Computerfestplatten ermöglicht. Die Speicherkapazität verschiedener Laufwerke konnte mit dem GMR-Effekt in den Gigabite-Bereich gesteigert werden. Die Datenverarbeitung im Computer beruht hingegen darauf, dass die elektrisch geladenen Elektronen in einer winzigen Schaltung fliessen, die in einem Mikrochip geätzt sind.

Energiesparende und leichtere Geräte

«Das Spannende ist, dass wir diese Entdeckung an flexiblen organischen Halbleitern gezeigt haben – Materialien, aus denen Handydisplays, Fernseher und Computermonitore der nächsten Generation bestehen dürften. Unsere Entdeckung könnte bedeuten, dass solche Geräte in Zukunft deutlich energieeffizienter und leichter sein werden», erklärt Forschungsleiter Dr. Alan Drew der Physikfakultät von Queen Mary. Drew und sein Team haben untersucht, wie Schichten von Lithiumfluorid (LiF), das ein inneres elektrisches Feld besitzt, die Spins der Elektronen verändern können, die durch ein solches Dünnschichtsystem fliessen. «Während es einfach ist, sich theoretisch vorzustellen, wie man in einem Bauteil Spin und Ladung der Elektronen kombinieren kann, haben wir als erste gezeigt, dass es möglich ist, Spins gezielt mit Hilfe elektrischer Felder zu kontrollieren», betont der Forscher.

Verfahren steht nur in der Schweiz zur Verfügung

«Mit dem verwendeten spektroskopische Verfahren der Spinrotation mit niederenergetischen Myonen konnte die Spinpolarisation in der Nähe verborgener Grenzflächen in der Dünnschichtanordnung sichtbar gemacht werden», erläutert Professor Christian Bernhard vom Physikdepartment der Universität Freiburg die erfolgreiche Methode. Die Experimente sind am Paul Scherrer Institut, dem einzigen Ort weltweit, an dem dieses Verfahren zur Verfügung steht, durchgeführt worden. Diese Methode nutzt die magnetischen Eigenschaften von Myonen – instabilen Elementarteilchen. «In einem solchen Experiment schiesst man Myonen in das Material hinein. Wenn die Myonen dann zerfallen, tragen die Zerfallsprodukte Information über magnetische Prozesse im Inneren des Materials», erklärt Dr. Andreas Suter vom PSI, wo dieses Verfahren entwickelt worden ist. «Das einzigartige an niederenergetischen Myonen ist, dass man sie gezielt in eine bestimmte Schicht eines Dünnschichtsystems hineinschiessen kann. So kann man mit diesem Verfahren den Magnetismus jeder einzelnen Schicht getrennt untersuchen.»

Über das PSI

Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1400 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakt:
Dr A J Drew, Molecular & Materials Physics, Physics Department, Queen Mary, University of London, London, E1 4NS, Grossbritannien,

Telefon: +44 (0)207 8827891, E-Mail: A.J.Drew@qmul.ac.uk [Englisch]

Prof. Dr. Christian Bernhard, Physik Department, Universität Freiburg, 1700 Fribourg, Schweiz,

Telefon: +41 (0)26 300 9070, E-Mail: christian.bernhard@unifr.ch [Deutsch, Englisch, Französisch]

Dr. Thomas Prokscha, Labor für Myonspin-Spektroskopie, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz,

Telefon: +41 (0)56 310 4275, E-Mail: thomas.prokscha@psi.ch [Deutsch, Englisch]

Prof. Dr. Elvezio Morenzoni, Labor für Myonspin-Spektroskopie, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz,

Telefon: +41 (0)56 310 3670, E-Mail: elvezio.morenzoni@psi.ch [Deutsch, Italienisch, Französisch, Englisch]

Originalveröffentlichung:
Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer
L. Schulz,L. Nuccio, M. Willis, P. Desai, P. Shakya, T. Kreouzis, V. K. Malik, C. Bernhard, F. L. Pratt, N. A. Morley, A. Suter, G. J. Nieuwenhuys, T. Prokscha, E. Morenzoni, W. P. Gillin & A. J. Drew
Nature Materials, Advance online publication (2010)
DOI: doi:10.1038/nmat2912

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch
http://www.psi.ch/media/forschen-mit-myonen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie