Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zukünftig auf demselben Chip: Daten speichern und verarbeiten

13.12.2010
In der Fachzeitschrift «Nature Materials» berichten Forscher von Queen Mary (ein College der University of London), der Universität Freiburg (Schweiz) und des Paul Scherrer Instituts (PSI), wie es ihnen gelungen ist, magnetisch polarisierte Elektronen mit elektrischen Feldern zu beeinflussen.

Diese wichtige Entdeckung könnte es ermöglichen, die Eigenschaften von Elektronen in einem Computerchip gleichzeitig für Verarbeitung und Speicherung von Daten zu nutzen. Die bisherige räumliche Trennung von Speicher- und Rechenchip würde entfallen. In Zukunft könnte dies die Entwicklung erheblich sparsamerer und leichterer elektronischer Geräte aller Art ermöglichen.

Die sogenannte «Spintronik» (aus den Worten Spin und Elektronik) gehört zum Forschungsgebiet der Nanoelektronik und hat sich rasch zu einer global verwendeten Technik für Computerfestplatten entwickelt. Elektronische Bauteile, die abwechselnd aus dünnen magnetischen und unmagnetischen Schichten bestehen, nutzen die magnetischen Eigenschaften – den Spin – der Elektronen, um Daten und Informationen, die auf einer Festplatte gespeichert sind, auszulesen.

Grundlage dafür ist der physikalische Effekt «Riesen-Magneto-Widerstand» (oder GMR-Effekt), der die Entwicklung neuer Leseköpfe für kleine Computerfestplatten ermöglicht. Die Speicherkapazität verschiedener Laufwerke konnte mit dem GMR-Effekt in den Gigabite-Bereich gesteigert werden. Die Datenverarbeitung im Computer beruht hingegen darauf, dass die elektrisch geladenen Elektronen in einer winzigen Schaltung fliessen, die in einem Mikrochip geätzt sind.

Energiesparende und leichtere Geräte

«Das Spannende ist, dass wir diese Entdeckung an flexiblen organischen Halbleitern gezeigt haben – Materialien, aus denen Handydisplays, Fernseher und Computermonitore der nächsten Generation bestehen dürften. Unsere Entdeckung könnte bedeuten, dass solche Geräte in Zukunft deutlich energieeffizienter und leichter sein werden», erklärt Forschungsleiter Dr. Alan Drew der Physikfakultät von Queen Mary. Drew und sein Team haben untersucht, wie Schichten von Lithiumfluorid (LiF), das ein inneres elektrisches Feld besitzt, die Spins der Elektronen verändern können, die durch ein solches Dünnschichtsystem fliessen. «Während es einfach ist, sich theoretisch vorzustellen, wie man in einem Bauteil Spin und Ladung der Elektronen kombinieren kann, haben wir als erste gezeigt, dass es möglich ist, Spins gezielt mit Hilfe elektrischer Felder zu kontrollieren», betont der Forscher.

Verfahren steht nur in der Schweiz zur Verfügung

«Mit dem verwendeten spektroskopische Verfahren der Spinrotation mit niederenergetischen Myonen konnte die Spinpolarisation in der Nähe verborgener Grenzflächen in der Dünnschichtanordnung sichtbar gemacht werden», erläutert Professor Christian Bernhard vom Physikdepartment der Universität Freiburg die erfolgreiche Methode. Die Experimente sind am Paul Scherrer Institut, dem einzigen Ort weltweit, an dem dieses Verfahren zur Verfügung steht, durchgeführt worden. Diese Methode nutzt die magnetischen Eigenschaften von Myonen – instabilen Elementarteilchen. «In einem solchen Experiment schiesst man Myonen in das Material hinein. Wenn die Myonen dann zerfallen, tragen die Zerfallsprodukte Information über magnetische Prozesse im Inneren des Materials», erklärt Dr. Andreas Suter vom PSI, wo dieses Verfahren entwickelt worden ist. «Das einzigartige an niederenergetischen Myonen ist, dass man sie gezielt in eine bestimmte Schicht eines Dünnschichtsystems hineinschiessen kann. So kann man mit diesem Verfahren den Magnetismus jeder einzelnen Schicht getrennt untersuchen.»

Über das PSI

Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1400 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakt:
Dr A J Drew, Molecular & Materials Physics, Physics Department, Queen Mary, University of London, London, E1 4NS, Grossbritannien,

Telefon: +44 (0)207 8827891, E-Mail: A.J.Drew@qmul.ac.uk [Englisch]

Prof. Dr. Christian Bernhard, Physik Department, Universität Freiburg, 1700 Fribourg, Schweiz,

Telefon: +41 (0)26 300 9070, E-Mail: christian.bernhard@unifr.ch [Deutsch, Englisch, Französisch]

Dr. Thomas Prokscha, Labor für Myonspin-Spektroskopie, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz,

Telefon: +41 (0)56 310 4275, E-Mail: thomas.prokscha@psi.ch [Deutsch, Englisch]

Prof. Dr. Elvezio Morenzoni, Labor für Myonspin-Spektroskopie, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz,

Telefon: +41 (0)56 310 3670, E-Mail: elvezio.morenzoni@psi.ch [Deutsch, Italienisch, Französisch, Englisch]

Originalveröffentlichung:
Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer
L. Schulz,L. Nuccio, M. Willis, P. Desai, P. Shakya, T. Kreouzis, V. K. Malik, C. Bernhard, F. L. Pratt, N. A. Morley, A. Suter, G. J. Nieuwenhuys, T. Prokscha, E. Morenzoni, W. P. Gillin & A. J. Drew
Nature Materials, Advance online publication (2010)
DOI: doi:10.1038/nmat2912

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch
http://www.psi.ch/media/forschen-mit-myonen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie