Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftlern gelingt der bislang empfindlichste Test des relativistischen Kernrückstoßeffekts

21.01.2016

Gute Übereinstimmung zwischen theoretischer Vorhersage und hochpräzisen g-Faktor-Messungen erweitert unsere detaillierte Kenntnis über die Wechselwirkung zwischen Elektronen und Kernen in Atomen

In einem kürzlich in Nature Communications erschienenen Artikel präsentieren Wissenschaftler aus Mainz, Heidelberg, Darmstadt und St. Petersburg erstmals einen direkten Test des Kernrückstoßeffekts.


Schematische Darstellung des Experiments: Von den lithiumähnlichen Kalziumionen Ca-40 und Ca-48 wird die g-Faktor-Differenz gemessen und berechnet, um so den relativistischen Kernrückstoßbeitrag zu testen.

Abb.: Florian Köhler, Institut für Physik, JGU


Dr. Florian Köhler und Dr. Sven Sturm beim g-Faktor-Experiment für hochgeladene Ionen im Untergeschoss des Instituts für Physik der Johannes Gutenberg-Universität Mainz (JGU). Hier wurden die g-Faktoren von Ca-40 und Ca-48 mit höchster Präzision experimentell bestimmt. Die Ionenfallen sowie die supraleitenden Detektionssysteme mit ultra-präziser Messelektronik befinden sich im 3,7-Tesla-Magneten, der von einer temperaturstabilisierten Box (rechts) umgeben ist.

Foto: Andreas Mooser, Institut für Physik, JGU

Während der Atomkern üblicherweise als räumlich fixiert betrachtet wird, beschreibt der Kernrückstoßeffekt eine gewisse Beweglichkeit des Kerns.

Damit wird es möglich, die Dynamik der Wechselwirkung zwischen den Elektronen und dem Atomkern zu beobachten. Die jetzt vorgelegten Ergebnisse zeigen, dass die theoretischen Vorhersagen gut mit den hochpräzisen Messungen übereinstimmen.

Um das Atom physikalisch zu beschreiben, entwickelte Niels Bohr vor etwa 100 Jahren sein berühmtes Atommodell und ebnete damit den Weg für unser heutiges Verständnis vom Aufbau der Atomhülle. Heute wird der Aufbau des Atoms mit einer der am genauesten getesteten Theorien beschrieben, der Quantenelektrodynamik gebundener Zustände (BS-QED).

Zum experimentellen Test dieser Theorie eignet sich der sogenannte g-Faktor des gebundenen Elektrons besonders. Der g-Faktor beschreibt die Stärke eines magnetischen Moments, ist in diesem Fall also ein Maß für die magnetische Kraft, die von dem gebundenen Elektron ausgeht.

In dem aktuellen Artikel präsentieren Dr. Florian Köhler et al. erstmals einen direkten Test des Kernrückstoßeffekts, „einen der faszinierendsten BS-QED-Beiträge zum g-Faktor“, so der Projektleiter des g-Faktor-Experiments hochgeladener Ionen, Dr. Sven Sturm vom Max-Planck-Institut für Kernphysik in Heidelberg.

Zum experimentellen Test dieses Beitrags wurden die g-Faktoren der beiden Kalziumisotope Ca-40 und Ca-48 verglichen, die jeweils nur noch drei Elektronen binden und sich somit in einer lithiumähnlichen Elektronenkonfiguration befinden. Sie besitzen trotz eines verhältnismäßig großen Massenunterschieds von 20 Prozent sehr ähnliche Kernladungsradien, sodass der Einfluss der Kerngrößen beim Vergleich der g-Faktoren vernachlässigt werden kann.

Aus diesem Grund bilden die beiden Kalziumisotope ein einzigartiges Testsystem, mit dem der winzige Unterschied ihrer g-Faktoren aufgrund unterschiedlich großer Beiträge des Kernrückstoßeffekts – der relative Unterschied beträgt gerade einmal etwa 0,000001 Prozent – experimentell bestimmt werden kann.

Der Test wurde durch die enge Zusammenarbeit dreier verschiedener physikalischer Disziplinen möglich: modernste BS-QED-Berechnungen von Theoretikern aus St. Petersburg um Prof. Dr. Vladimir M. Shabaev, hochpräzise Messungen der g-Faktoren von einer Forschergruppe aus Heidelberg und Mainz und die genaue Bestimmung der Atommassen der beteiligten Kalziumisotope am GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Die gute Übereinstimmung zwischen dem theoretisch vorhergesagten Kernrückstoßeffekt und den hochpräzisen g-Faktor-Messungen erweitert unsere detaillierte Kenntnis über die Wechselwirkung zwischen Elektronen und Kernen in Atomen.

Das Experiment bildet zudem die Grundlage für eine neue Generation von Tests der BS-QED und ebnet den Weg für weitere grundlegende Präzisionsmessungen in der Atomphysik, beispielsweise die Bestimmung der Feinstrukturkonstante.

Veröffentlichung:
Isotope dependence of the Zeeman effect in lithium-like calcium
Florian Köhler et al.
Nature Communications, 18. Januar 2016
DOI: 10.1038/ncomms10246


Weitere Informationen:
Dr. Florian Köhler
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
Tel. +49 6131 39-22891
E-Mail: koehlef@uni-mainz.de
und
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg

Weitere Links:
http://www.nature.com/ncomms/2016/160118/ncomms10246/full/ncomms10246.html (Article)
https://www.mpi-hd.mpg.de/blaum/gfactor/silicon/index.de.html (Webseite zum g-Faktor-Experiment)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie