Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler machen Eisen durchsichtig

09.02.2012
Erstmals gezeigt, dass Atomkerne transparent werden
Einem Team von DESY-Wissenschaftlern um Dr. Ralf Röhlsberger gelang es an der hochbrillanten Synchrotronlichtquelle PETRA III, Atomkerne mit Hilfe von Röntgenlicht transparent zu machen. Sie entdeckten dabei gleichzeitig ein neues Prinzip, um einen optisch gesteuerten Schalter für Licht herzustellen, also Licht mit Licht zu beeinflussen, ein wichtiger Baustein auf dem Weg zu leistungsfähigen Quantencomputern. Die Forschungsergebnisse werden in der aktuellen Ausgabe des Wissenschaftsjournals „Nature“ (DOI: 10.1038/nature10741) präsentiert.

Der Effekt der elektromagnetisch induzierten Transparenz (EIT) ist aus der Laserphysik bekannt. Durch die Einstrahlung von intensivem Laserlicht kann man ein normalerweise undurchsichtiges Material für Licht einer bestimmten Wellenlänge transparent machen. Dieser Effekt entsteht durch ein komplexes Wechselspiel des Lichtes mit der Elektronenhülle der Atome. Die Helmholtz-Forscher um Röhlsberger wiesen jetzt erstmals an der Röntgenquelle PETRA III bei DESY nach, dass es so einen Transparenzeffekt auch für Röntgenlicht gibt, hier hervorgerufen durch die Anregung von Atomkernen des Mössbauer-Isotops Eisen-57 (welches zu 2% im natürlichen Eisen enthalten ist). Im Gegensatz zu herkömmlichen Experimenten brauchten sie dafür nur sehr geringe Lichtintensitäten.

Wie funktioniert das Experiment? Die Forscher platzierten für ihre Experimente zwei dünne Schichten von Eisen-57 Atomen in einem optischen Resonator, einer Anordnung zweier paralleler Platinspiegel, zwischen denen Röntgenlicht mehrfach hin und her reflektiert wird. Die beiden jeweils etwa drei Nanometer dicken Schichten von Eisen-57-Atomen wurden zwischen den beiden Platinspiegeln durch Kohlenstoff, der für Röntgenlicht der verwendeten Energie durchlässig ist, präzise in Position gehalten. Das so hergestellte Sandwich aus dünnen Schichten, das nur rund 50 Nanometer dick ist, beleuchteten die Forscher unter sehr kleinen Einfallswinkeln mit einem äußerst dünnen Röntgenstrahl der Synchrotronlichtquelle PETRA III. Das Licht wird innerhalb dieses Spiegelsystems etliche Male hin- und her reflektiert und bildet eine stehende Welle, eine sogenannte Resonanz. Stehen die Wellenlänge des Lichts und die Abstände der beiden Eisenschichten in diesem optischen Resonator im richtigen Verhältnis zueinander, können die Forscher beobachten, dass das Eisen für das Röntgenlicht fast vollständig durchsichtig wird. Dafür muss eine Eisenschicht genau im Minimum (Knoten) der Lichtresonanz liegen, die zweite genau im Maximum. Verschiebt man die Schichten innerhalb des Resonators, wird das System sofort wieder undurchsichtig. Die Forscher machen für diese Beobachtung einen quantenoptischen Effekt verantwortlich, der durch das Zusammenspiel der Atome in den Eisenschichten hervorgerufen wird. Anders als bei einzelnen Atomen absorbieren und strahlen hier die Atome einer Schicht gemeinsam im Ensemble.
Die Schwingungen der Eisenatome in den beiden Schichten kompensieren sich dabei gegenseitig, so dass das eingestrahlte Licht ungehindert passieren kann: Das Eisen erscheint durchsichtig. Im Gegensatz zu bisherigen Experimenten sind nur wenige Lichtquanten erforderlich, um diesen Effekt hervorzubringen.
„Unsere Transparenz von Atomkernen ist quasi der EIT-Effekt im Atomkern“, erläutert Röhlsberger die Experimente. „Der Weg zum Lichtquanten-Computer ist sicherlich noch sehr weit. Aber mit dem Effekt ermöglichen wir eine ganz neue Klasse von quantenoptischen Experimenten höchster Empfindlichkeit. Mit dem gerade hier in Hamburg entstehenden Röntgenlaser European XFEL sollte es dann tatsächlich möglich sein, Röntgenlicht mit Röntgenlicht zu steuern.“

Doch auch das Quanten-Computing ist durch dieses Experiment einen deutlichen technischen Schritt vorangekommen: Neben der prinzipiellen Möglichkeit, Material mit Hilfe von Licht transparent zu machen, ist für eine spätere technische Umsetzung auch die Intensität des Lichts entscheidend. Jedes zusätzliche Lichtquant im Computer bedeutet zusätzliche Abwärme, die durch die Nutzung des jetzt entdeckten Effekts minimiert würde.

Zur Weiterführung der Experimente und optimalen Ausnutzung der winzigen Röntgenstrahlgröße der hochbrillanten Röntgenquelle PETRA III wird bei DESY zurzeit eine neue Beschichtungsanlage zur Herstellung und Optimierung dieser Art optischer Resonatoren installiert.

In den Experimenten der DESY-Wissenschaftler zeigte sich außerdem eine weitere Parallele zum EIT-Effekt: Das im optischen Resonator gefangene Licht breitet sich nur noch mit einer Geschwindigkeit von wenigen Metern pro Sekunde aus – normalerweise sind es knapp 300 000 Kilometer pro Sekunde. Wie langsam das Licht in diesem Fall wirklich wird, und ob man diesen Effekt ebenfalls wissenschaftlich nutzen kann, wollen die Forscher in Folgeexperimenten klären. Eine mögliche Anwendung und gleichzeitig ein wichtiger Baustein auf dem Weg zum optischen Quantencomputer ist beispielsweise die Speicherung von Informationen in Form extrem langsamer oder gar gestoppter Lichtpulse.

Dr. Thomas Zoufal | idw
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen