Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler machen Eisen durchsichtig

09.02.2012
Erstmals gezeigt, dass Atomkerne transparent werden
Einem Team von DESY-Wissenschaftlern um Dr. Ralf Röhlsberger gelang es an der hochbrillanten Synchrotronlichtquelle PETRA III, Atomkerne mit Hilfe von Röntgenlicht transparent zu machen. Sie entdeckten dabei gleichzeitig ein neues Prinzip, um einen optisch gesteuerten Schalter für Licht herzustellen, also Licht mit Licht zu beeinflussen, ein wichtiger Baustein auf dem Weg zu leistungsfähigen Quantencomputern. Die Forschungsergebnisse werden in der aktuellen Ausgabe des Wissenschaftsjournals „Nature“ (DOI: 10.1038/nature10741) präsentiert.

Der Effekt der elektromagnetisch induzierten Transparenz (EIT) ist aus der Laserphysik bekannt. Durch die Einstrahlung von intensivem Laserlicht kann man ein normalerweise undurchsichtiges Material für Licht einer bestimmten Wellenlänge transparent machen. Dieser Effekt entsteht durch ein komplexes Wechselspiel des Lichtes mit der Elektronenhülle der Atome. Die Helmholtz-Forscher um Röhlsberger wiesen jetzt erstmals an der Röntgenquelle PETRA III bei DESY nach, dass es so einen Transparenzeffekt auch für Röntgenlicht gibt, hier hervorgerufen durch die Anregung von Atomkernen des Mössbauer-Isotops Eisen-57 (welches zu 2% im natürlichen Eisen enthalten ist). Im Gegensatz zu herkömmlichen Experimenten brauchten sie dafür nur sehr geringe Lichtintensitäten.

Wie funktioniert das Experiment? Die Forscher platzierten für ihre Experimente zwei dünne Schichten von Eisen-57 Atomen in einem optischen Resonator, einer Anordnung zweier paralleler Platinspiegel, zwischen denen Röntgenlicht mehrfach hin und her reflektiert wird. Die beiden jeweils etwa drei Nanometer dicken Schichten von Eisen-57-Atomen wurden zwischen den beiden Platinspiegeln durch Kohlenstoff, der für Röntgenlicht der verwendeten Energie durchlässig ist, präzise in Position gehalten. Das so hergestellte Sandwich aus dünnen Schichten, das nur rund 50 Nanometer dick ist, beleuchteten die Forscher unter sehr kleinen Einfallswinkeln mit einem äußerst dünnen Röntgenstrahl der Synchrotronlichtquelle PETRA III. Das Licht wird innerhalb dieses Spiegelsystems etliche Male hin- und her reflektiert und bildet eine stehende Welle, eine sogenannte Resonanz. Stehen die Wellenlänge des Lichts und die Abstände der beiden Eisenschichten in diesem optischen Resonator im richtigen Verhältnis zueinander, können die Forscher beobachten, dass das Eisen für das Röntgenlicht fast vollständig durchsichtig wird. Dafür muss eine Eisenschicht genau im Minimum (Knoten) der Lichtresonanz liegen, die zweite genau im Maximum. Verschiebt man die Schichten innerhalb des Resonators, wird das System sofort wieder undurchsichtig. Die Forscher machen für diese Beobachtung einen quantenoptischen Effekt verantwortlich, der durch das Zusammenspiel der Atome in den Eisenschichten hervorgerufen wird. Anders als bei einzelnen Atomen absorbieren und strahlen hier die Atome einer Schicht gemeinsam im Ensemble.
Die Schwingungen der Eisenatome in den beiden Schichten kompensieren sich dabei gegenseitig, so dass das eingestrahlte Licht ungehindert passieren kann: Das Eisen erscheint durchsichtig. Im Gegensatz zu bisherigen Experimenten sind nur wenige Lichtquanten erforderlich, um diesen Effekt hervorzubringen.
„Unsere Transparenz von Atomkernen ist quasi der EIT-Effekt im Atomkern“, erläutert Röhlsberger die Experimente. „Der Weg zum Lichtquanten-Computer ist sicherlich noch sehr weit. Aber mit dem Effekt ermöglichen wir eine ganz neue Klasse von quantenoptischen Experimenten höchster Empfindlichkeit. Mit dem gerade hier in Hamburg entstehenden Röntgenlaser European XFEL sollte es dann tatsächlich möglich sein, Röntgenlicht mit Röntgenlicht zu steuern.“

Doch auch das Quanten-Computing ist durch dieses Experiment einen deutlichen technischen Schritt vorangekommen: Neben der prinzipiellen Möglichkeit, Material mit Hilfe von Licht transparent zu machen, ist für eine spätere technische Umsetzung auch die Intensität des Lichts entscheidend. Jedes zusätzliche Lichtquant im Computer bedeutet zusätzliche Abwärme, die durch die Nutzung des jetzt entdeckten Effekts minimiert würde.

Zur Weiterführung der Experimente und optimalen Ausnutzung der winzigen Röntgenstrahlgröße der hochbrillanten Röntgenquelle PETRA III wird bei DESY zurzeit eine neue Beschichtungsanlage zur Herstellung und Optimierung dieser Art optischer Resonatoren installiert.

In den Experimenten der DESY-Wissenschaftler zeigte sich außerdem eine weitere Parallele zum EIT-Effekt: Das im optischen Resonator gefangene Licht breitet sich nur noch mit einer Geschwindigkeit von wenigen Metern pro Sekunde aus – normalerweise sind es knapp 300 000 Kilometer pro Sekunde. Wie langsam das Licht in diesem Fall wirklich wird, und ob man diesen Effekt ebenfalls wissenschaftlich nutzen kann, wollen die Forscher in Folgeexperimenten klären. Eine mögliche Anwendung und gleichzeitig ein wichtiger Baustein auf dem Weg zum optischen Quantencomputer ist beispielsweise die Speicherung von Informationen in Form extrem langsamer oder gar gestoppter Lichtpulse.

Dr. Thomas Zoufal | idw
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie