Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winzige Spiralen

24.10.2012
Jülicher Physiker simulieren strömungsinduzierte Helix-Bildung biologischer Makromoleküle in Mikrokanälen

Wenn Polymerfäden durch mikroskopisch kleine Kanäle fließen, können sie sich verbiegen und die Form einer Spirale annehmen. Welche physikalischen Kräfte dafür entscheidend sind, bestimmten Wissenschaftler des Forschungszentrums Jülich anhand eines physikalischen Modells.



Simulationen Jülicher Physiker zeigen: Wenn Polymerfäden durch mikroskopisch kleine Röhren fließen, rollen sie sich unter bestimmten Bedingungen spiralförmig auf. Dabei gilt: Je weiter sich die Röhre öffnet, umso enger windet sich der Polymerfaden. Das auf den ersten Blick paradox erscheinende Fließverhalten können die Wissenschaftler anhand eines Modells erklären.
Quelle: Forschungszentrum Jülich


Ein besseres Verständnis solcher Systeme ist zum Beispiel von Interesse für die Entwicklung von Mikrofluidiksystemen, die in Labors zur Untersuchung von DNA und anderen flexiblen Makromolekülen genutzt werden. Die Ergebnisse hat die renommierte Fachzeitschrift „Physical Review Letters“ heute online veröffentlicht (DOI: 10.1103/PhysRevLett.109.178101).

Die Forscher simulierten für ihr Modell einzelne semiflexible Polymerketten, die in einer zähen Flüssigkeit durch eine Röhre mit variierendem Durchmesser strömen. Semiflexible Polymere sind weder steif noch frei verformbar, sondern ähnlich biegbar wie etwa ein Gartenschlauch. Vor allem Makromoleküle aus der Natur besitzen diese Eigenschaft, etwa die DNA, der Träger unseres Erbguts. Die Wissenschaftler beobachteten, dass die Polymere die engen Röhrenabschnitte in fast gestreckter Form durchqueren, sich jedoch zunächst biegen und dann spiralförmig zusammenballen, wenn sie die breiteren Röhrenabschnitten erreichen.

„So eine Spiralbildung findet man in der Natur häufig. Honig zum Beispiel, den man von einem Löffel als dünnen Faden aufs Toastbrot fließen lässt, nimmt auch die Form einer Spirale an“, ordnet Prof. Gerhard Gompper, Direktor am Jülicher Institute of Complex Systems (ICS) und am Institute for Advanced Simulation (IAS) die Beobachtung der Forscher ein. „Doch die Gründe, warum sich Spiralen bilden, können vollkommen unterschiedlich sein. Beim Beispiel des Honigs kommt es beim Auftreffen auf den Toast zunächst zu einem Rückstau im Faden, der sich durch das „Aufrollen“ reduzieren lässt.“

Die Spiralbildung der Polymere in den strukturierten Mikroröhren dagegen sehen die Forscher als eine Folge der veränderten Druckbedingungen beim Aufweiten der Röhre an: „Dort verringert sich die Fließgeschwindigkeit. Dadurch wird der ankommende Teil der Polymerfäden abgebremst, während der folgende Teil mit unverminderter Geschwindigkeit nachrückt“, erläutert Prof. Roland Winkler vom IAS.

Die genaue Beschaffenheit der Spirale hängt von drei Faktoren ab, fanden die Wissenschaftler: der Biegesteifigkeit der Polymere, der Fließgeschwindigkeit und dem Verhältnis des Röhrendurchmessers an weiten im Vergleich zu engen Stellen. Zum Beispiel wird die Spirale umso enger, je größer dieses Verhältnis ist. Die bestimmenden Kräfte konnten die Physiker identifizieren, indem sie ihr Modellsystem auf das Wesentliche reduzierten: Die Polymerketten sind dünne Fäden, die Flüssigkeit eine dichte Packung kleiner Kügelchen. Durch diese Vereinfachung können universelle Gesetzmäßigkeiten leichter identifiziert und beschrieben werden.

„Die Mikrofluidik erlaubt die Untersuchung winziger Flüssigkeitsmengen und ist daher für viele zukünftige chemische und medizinische Untersuchungen von herausragender Bedeutung“, erläutert Gompper. Ein Ziel ist die Entwicklung von medizinischen Einmaltests, mit denen das Blut von Patienten einfach und kostengünstig untersucht werden kann. Solche Tests wären zum Beispiel für Entwicklungsländer interessant, in denen ausgebildetes Personal und teure Labors fehlen, oder für Vorsorgeuntersuchungen. „Hierzu muss aber das dynamische Verhalten einzelner Makromoleküle oder Zellen genau verstanden werden. Strukturierte Mikrokanäle eröffnen hier ganz neue Möglichkeiten, die wir in den nächsten Jahren im Detail untersuchen wollen.“

Originalveröffentlichung:
Flow-Induced Helical Coiling of Semiflexible Polymers in Structured Microchannels; Raghunath Chelakkot, Roland G. Winkler, Gerhard Gompper; Phys. Rev. Lett. 109, 178101 (2012), DOI: 10.1103/PhysRevLett.109.178101

Bilder/Filme:
Simulationen Jülicher Physiker zeigen: Wenn Polymerfäden durch mikroskopisch kleine Röhren fließen, rollen sie sich unter bestimmten Bedingungen spiralförmig auf. Dabei gilt: Je weiter sich die Röhre öffnet, umso enger windet sich der Polymerfaden. Das auf den ersten Blick paradox erscheinende Fließverhalten können die Wissenschaftler anhand eines Modells erklären.

Quelle: Forschungszentrum Jülich

Weitere Informationen:

Institutsbereich Theorie der Weichen Materie und Biophysik (ICS-2 / IAS-2)
http://www.fz-juelich.de/ics/ics-2/EN/Home/home_node.html;jsessionid=0AEA738B7A8AD1DA5C137D2C811DAAD9

Ansprechpartner:

Prof. Dr. Roland Winkler, Forschungszentrum Jülich, Theorie der Weichen Materie und Biophysik, Tel. 02461 61-4220, E-Mail: r.winkler@fz-juelich.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Angela Wenzik | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie