Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winzige Spiralen

24.10.2012
Jülicher Physiker simulieren strömungsinduzierte Helix-Bildung biologischer Makromoleküle in Mikrokanälen

Wenn Polymerfäden durch mikroskopisch kleine Kanäle fließen, können sie sich verbiegen und die Form einer Spirale annehmen. Welche physikalischen Kräfte dafür entscheidend sind, bestimmten Wissenschaftler des Forschungszentrums Jülich anhand eines physikalischen Modells.



Simulationen Jülicher Physiker zeigen: Wenn Polymerfäden durch mikroskopisch kleine Röhren fließen, rollen sie sich unter bestimmten Bedingungen spiralförmig auf. Dabei gilt: Je weiter sich die Röhre öffnet, umso enger windet sich der Polymerfaden. Das auf den ersten Blick paradox erscheinende Fließverhalten können die Wissenschaftler anhand eines Modells erklären.
Quelle: Forschungszentrum Jülich


Ein besseres Verständnis solcher Systeme ist zum Beispiel von Interesse für die Entwicklung von Mikrofluidiksystemen, die in Labors zur Untersuchung von DNA und anderen flexiblen Makromolekülen genutzt werden. Die Ergebnisse hat die renommierte Fachzeitschrift „Physical Review Letters“ heute online veröffentlicht (DOI: 10.1103/PhysRevLett.109.178101).

Die Forscher simulierten für ihr Modell einzelne semiflexible Polymerketten, die in einer zähen Flüssigkeit durch eine Röhre mit variierendem Durchmesser strömen. Semiflexible Polymere sind weder steif noch frei verformbar, sondern ähnlich biegbar wie etwa ein Gartenschlauch. Vor allem Makromoleküle aus der Natur besitzen diese Eigenschaft, etwa die DNA, der Träger unseres Erbguts. Die Wissenschaftler beobachteten, dass die Polymere die engen Röhrenabschnitte in fast gestreckter Form durchqueren, sich jedoch zunächst biegen und dann spiralförmig zusammenballen, wenn sie die breiteren Röhrenabschnitten erreichen.

„So eine Spiralbildung findet man in der Natur häufig. Honig zum Beispiel, den man von einem Löffel als dünnen Faden aufs Toastbrot fließen lässt, nimmt auch die Form einer Spirale an“, ordnet Prof. Gerhard Gompper, Direktor am Jülicher Institute of Complex Systems (ICS) und am Institute for Advanced Simulation (IAS) die Beobachtung der Forscher ein. „Doch die Gründe, warum sich Spiralen bilden, können vollkommen unterschiedlich sein. Beim Beispiel des Honigs kommt es beim Auftreffen auf den Toast zunächst zu einem Rückstau im Faden, der sich durch das „Aufrollen“ reduzieren lässt.“

Die Spiralbildung der Polymere in den strukturierten Mikroröhren dagegen sehen die Forscher als eine Folge der veränderten Druckbedingungen beim Aufweiten der Röhre an: „Dort verringert sich die Fließgeschwindigkeit. Dadurch wird der ankommende Teil der Polymerfäden abgebremst, während der folgende Teil mit unverminderter Geschwindigkeit nachrückt“, erläutert Prof. Roland Winkler vom IAS.

Die genaue Beschaffenheit der Spirale hängt von drei Faktoren ab, fanden die Wissenschaftler: der Biegesteifigkeit der Polymere, der Fließgeschwindigkeit und dem Verhältnis des Röhrendurchmessers an weiten im Vergleich zu engen Stellen. Zum Beispiel wird die Spirale umso enger, je größer dieses Verhältnis ist. Die bestimmenden Kräfte konnten die Physiker identifizieren, indem sie ihr Modellsystem auf das Wesentliche reduzierten: Die Polymerketten sind dünne Fäden, die Flüssigkeit eine dichte Packung kleiner Kügelchen. Durch diese Vereinfachung können universelle Gesetzmäßigkeiten leichter identifiziert und beschrieben werden.

„Die Mikrofluidik erlaubt die Untersuchung winziger Flüssigkeitsmengen und ist daher für viele zukünftige chemische und medizinische Untersuchungen von herausragender Bedeutung“, erläutert Gompper. Ein Ziel ist die Entwicklung von medizinischen Einmaltests, mit denen das Blut von Patienten einfach und kostengünstig untersucht werden kann. Solche Tests wären zum Beispiel für Entwicklungsländer interessant, in denen ausgebildetes Personal und teure Labors fehlen, oder für Vorsorgeuntersuchungen. „Hierzu muss aber das dynamische Verhalten einzelner Makromoleküle oder Zellen genau verstanden werden. Strukturierte Mikrokanäle eröffnen hier ganz neue Möglichkeiten, die wir in den nächsten Jahren im Detail untersuchen wollen.“

Originalveröffentlichung:
Flow-Induced Helical Coiling of Semiflexible Polymers in Structured Microchannels; Raghunath Chelakkot, Roland G. Winkler, Gerhard Gompper; Phys. Rev. Lett. 109, 178101 (2012), DOI: 10.1103/PhysRevLett.109.178101

Bilder/Filme:
Simulationen Jülicher Physiker zeigen: Wenn Polymerfäden durch mikroskopisch kleine Röhren fließen, rollen sie sich unter bestimmten Bedingungen spiralförmig auf. Dabei gilt: Je weiter sich die Röhre öffnet, umso enger windet sich der Polymerfaden. Das auf den ersten Blick paradox erscheinende Fließverhalten können die Wissenschaftler anhand eines Modells erklären.

Quelle: Forschungszentrum Jülich

Weitere Informationen:

Institutsbereich Theorie der Weichen Materie und Biophysik (ICS-2 / IAS-2)
http://www.fz-juelich.de/ics/ics-2/EN/Home/home_node.html;jsessionid=0AEA738B7A8AD1DA5C137D2C811DAAD9

Ansprechpartner:

Prof. Dr. Roland Winkler, Forschungszentrum Jülich, Theorie der Weichen Materie und Biophysik, Tel. 02461 61-4220, E-Mail: r.winkler@fz-juelich.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Angela Wenzik | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften