Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie ein Material zum Supraleiter wird: Phänomen der Elektronenpaare beobachtet

07.07.2017

Hochtemperatur-Supraleiter sind Materialien, die bei tiefen Temperaturen ihren elektrischen Widerstand verlieren und damit Strom ohne Verlust transportieren können - und das im Gegensatz zu konventionellen Supraleitern bereits bei vergleichsweise hohen Temperaturen. Trotz ihrer potenziellen Bedeutung für die Elektronik und die Medizintechnik war bisher nicht bekannt, wie der physikalische Mechanismus hinter der Hochtemperatur-Supraleitung funktioniert.

Ein internationales Forscherteam der Universität Leipzig und insbesondere der Universität von Cornell, USA, hat nun eine entscheidende Erkenntnis hin zu einem besseren Verständnis errungen - ein wesentlicher Schritt auf dem Weg zu einer breiteren Nutzung dieser Technologie. Die Erkenntnisse wurden heute im renommierten Fachmagazin Science veröffentlicht.


Cooper-Paare auf mikroskopischer Skala: Die Eisenatome in eisenbasierten Supraleitern bilden ein Quadratgitter mit jeweils zwei aktiven Orbitalen.

Foto: Peter O. Sprau, Yi Xue Chong, Cornell University

Für die technologische Anwendung ist es erstrebenswert, Supraleiter zu verwenden, die eine hohe sogenannte Sprungtemperatur haben. Oberhalb dieser Temperatur befindet sich das Material im normal leitenden, unterhalb davon im supraleitenden Zustand. Bei Hochtemperatursupraleitern (HTSL) kann wegen ihrer höheren Sprungtemperatur für die Kühlung der preiswertere flüssige Stickstoff verwendet werden - statt des wesentlich teureren, flüssigen Heliums bei herkömmlichen Supraleitern.

Obwohl HTSL bereits seit vielen Jahren bekannt sind, hat man bisher noch nicht genau verstanden, wie der physikalische Mechanismus dahinter funktioniert und warum manche der Materialien bereits bei Temperaturen von über 100 Kelvin, etwa -170 Grad Celsius, zum Supraleiter werden, andere mit ganz ähnlichen kristallinen Strukturen jedoch erst unter 10 Kelvin, etwa -260 Grad Celsius, und andere wiederum gar nicht. Würde man diese Zusammenhänge besser verstehen, so wäre es in Zukunft eventuell möglich, diese Leitung von Strom ohne Verluste auch bei höheren Temperaturen zu erreichen.

Physiker der Universität Leipzig haben nun gemeinsam mit ihren US-amerikanischen und dänischen Kollegen einen entscheidenden Schritt auf dem Weg zu einem besseren Verständnis getan: Voraussetzung für die Supraleitung ist, dass bei tiefen Temperaturen zwischen zwei Elektronen eine anziehende Wechselwirkung entsteht.

Dadurch können sich zwischen zwei Elektronen mit unterschiedlichen elektronischen Eigenschaften, das heißt, unterschiedlichem Eigendrehimpuls, die sogenannten Cooper-Paare bilden. Diese tragen dann dazu bei, den Strom verlustfrei durch den Supraleiter zu transportieren. Das Forscherteam konnte nun herausfinden, wie es zu dieser selektiven Paarbildung kommen kann.

"Wir haben beobachtet, dass es zwei Arten von Elektronen gibt, die sich durch elektronische Zustände, also ihren Aufenthalt in unterschiedlichen Orbitalen, unterscheiden. Elektronen in einem bestimmten Orbital bilden Cooper-Paare, während Elektronen des anderen Orbitals zur notwendigen Wechselwirkung beitragen. Das eine Elektron ist in Längsrichtung ausgerichtet, das andere Elektron vor allem in Querrichtung", erklärt Dr. Andreas Kreisel, Wissenschaftler am Institut für Theoretische Physik an der Universität Leipzig und einer der beteiligten Forscher. "Entscheidend für die Cooper-Paarung ist, dass die Elektronen in jeweils verschiedenen elektronischen Zuständen, Orbitalen, sind."

Zu diesen Erkenntnissen gelangten die Physiker anhand von Eisen-Selenid, einem eisenbasierten HTSL, der sich unter anderem durch seinen einfachen chemischen Aufbau gut eignet, um die Mechanismen der Supraleitung aufzuklären. Untersucht haben die Wissenschaftler die Eigenschaften der Elektronen wiederum mithilfe der Scanning-Tunneling-Mikroskopie.

Dabei wird eine atomar dünne Nadelspitze über die Oberfläche des Eisen-Selenid-Kristalls bewegt und eine elektrische Spannung angelegt. Misst man dann den elektrischen Strom, lassen sich Strukturen von sub-atomarer Größe auflösen und Unregelmäßigkeiten aufspüren. Anhand der Interferenzmuster an diesen Unregelmäßigkeiten konnten sie schließlich schlussfolgern, dass Supraleitung selektiv nur von einer der beiden Arten von Elektronen ausgehen kann.

Das Thema Supraleiter beschäftigt die Physik bereits seit mehreren Jahrzehnten. Bisher sind zu keinem anderen Einzelthema mit fünf Nobelpreisen so viele dieser höchsten wissenschaftlichen Auszeichnungen verliehen worden - und entsprechend groß ist das Interesse daran, die richtige Theorie hinter der Supraleitung zu finden. Falls es tatsächlich gelänge, ein bei gewöhnlicher Umgebungstemperatur supraleitendes Material zu finden, würde dies höchstwahrscheinlich die moderne Technik tiefgreifend verändern.

Die heutige (07.07.2017) Veröffentlichung in "Science":
"Discovery of orbital-selective Cooper pairing in FeSe", DOI: 10.1126/science.aal1575

Weitere Informationen:

Dr. Andreas Kreisel
Institut für Theoretische Physik
Telefon: +49 341 97-32461
E-Mail: kreisel@itp.uni-leipzig.de
Web: http://www.physik.uni-leipzig.de/~kreisel/

Weitere Informationen:

http://science.sciencemag.org/content/357/6346/75 "Discovery of orbital-selective Cooper pairing in FeSe", Artikel in der Fachzeitschrift Science

Katrin Henneberg | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen

19.06.2018 | Physik Astronomie

Automatisierung und Produktionstechnik – Wandlungsfähig – Präzise – Digital

19.06.2018 | Messenachrichten

Überdosis Calcium

19.06.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics