Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie ein Material zum Supraleiter wird: Phänomen der Elektronenpaare beobachtet

07.07.2017

Hochtemperatur-Supraleiter sind Materialien, die bei tiefen Temperaturen ihren elektrischen Widerstand verlieren und damit Strom ohne Verlust transportieren können - und das im Gegensatz zu konventionellen Supraleitern bereits bei vergleichsweise hohen Temperaturen. Trotz ihrer potenziellen Bedeutung für die Elektronik und die Medizintechnik war bisher nicht bekannt, wie der physikalische Mechanismus hinter der Hochtemperatur-Supraleitung funktioniert.

Ein internationales Forscherteam der Universität Leipzig und insbesondere der Universität von Cornell, USA, hat nun eine entscheidende Erkenntnis hin zu einem besseren Verständnis errungen - ein wesentlicher Schritt auf dem Weg zu einer breiteren Nutzung dieser Technologie. Die Erkenntnisse wurden heute im renommierten Fachmagazin Science veröffentlicht.


Cooper-Paare auf mikroskopischer Skala: Die Eisenatome in eisenbasierten Supraleitern bilden ein Quadratgitter mit jeweils zwei aktiven Orbitalen.

Foto: Peter O. Sprau, Yi Xue Chong, Cornell University

Für die technologische Anwendung ist es erstrebenswert, Supraleiter zu verwenden, die eine hohe sogenannte Sprungtemperatur haben. Oberhalb dieser Temperatur befindet sich das Material im normal leitenden, unterhalb davon im supraleitenden Zustand. Bei Hochtemperatursupraleitern (HTSL) kann wegen ihrer höheren Sprungtemperatur für die Kühlung der preiswertere flüssige Stickstoff verwendet werden - statt des wesentlich teureren, flüssigen Heliums bei herkömmlichen Supraleitern.

Obwohl HTSL bereits seit vielen Jahren bekannt sind, hat man bisher noch nicht genau verstanden, wie der physikalische Mechanismus dahinter funktioniert und warum manche der Materialien bereits bei Temperaturen von über 100 Kelvin, etwa -170 Grad Celsius, zum Supraleiter werden, andere mit ganz ähnlichen kristallinen Strukturen jedoch erst unter 10 Kelvin, etwa -260 Grad Celsius, und andere wiederum gar nicht. Würde man diese Zusammenhänge besser verstehen, so wäre es in Zukunft eventuell möglich, diese Leitung von Strom ohne Verluste auch bei höheren Temperaturen zu erreichen.

Physiker der Universität Leipzig haben nun gemeinsam mit ihren US-amerikanischen und dänischen Kollegen einen entscheidenden Schritt auf dem Weg zu einem besseren Verständnis getan: Voraussetzung für die Supraleitung ist, dass bei tiefen Temperaturen zwischen zwei Elektronen eine anziehende Wechselwirkung entsteht.

Dadurch können sich zwischen zwei Elektronen mit unterschiedlichen elektronischen Eigenschaften, das heißt, unterschiedlichem Eigendrehimpuls, die sogenannten Cooper-Paare bilden. Diese tragen dann dazu bei, den Strom verlustfrei durch den Supraleiter zu transportieren. Das Forscherteam konnte nun herausfinden, wie es zu dieser selektiven Paarbildung kommen kann.

"Wir haben beobachtet, dass es zwei Arten von Elektronen gibt, die sich durch elektronische Zustände, also ihren Aufenthalt in unterschiedlichen Orbitalen, unterscheiden. Elektronen in einem bestimmten Orbital bilden Cooper-Paare, während Elektronen des anderen Orbitals zur notwendigen Wechselwirkung beitragen. Das eine Elektron ist in Längsrichtung ausgerichtet, das andere Elektron vor allem in Querrichtung", erklärt Dr. Andreas Kreisel, Wissenschaftler am Institut für Theoretische Physik an der Universität Leipzig und einer der beteiligten Forscher. "Entscheidend für die Cooper-Paarung ist, dass die Elektronen in jeweils verschiedenen elektronischen Zuständen, Orbitalen, sind."

Zu diesen Erkenntnissen gelangten die Physiker anhand von Eisen-Selenid, einem eisenbasierten HTSL, der sich unter anderem durch seinen einfachen chemischen Aufbau gut eignet, um die Mechanismen der Supraleitung aufzuklären. Untersucht haben die Wissenschaftler die Eigenschaften der Elektronen wiederum mithilfe der Scanning-Tunneling-Mikroskopie.

Dabei wird eine atomar dünne Nadelspitze über die Oberfläche des Eisen-Selenid-Kristalls bewegt und eine elektrische Spannung angelegt. Misst man dann den elektrischen Strom, lassen sich Strukturen von sub-atomarer Größe auflösen und Unregelmäßigkeiten aufspüren. Anhand der Interferenzmuster an diesen Unregelmäßigkeiten konnten sie schließlich schlussfolgern, dass Supraleitung selektiv nur von einer der beiden Arten von Elektronen ausgehen kann.

Das Thema Supraleiter beschäftigt die Physik bereits seit mehreren Jahrzehnten. Bisher sind zu keinem anderen Einzelthema mit fünf Nobelpreisen so viele dieser höchsten wissenschaftlichen Auszeichnungen verliehen worden - und entsprechend groß ist das Interesse daran, die richtige Theorie hinter der Supraleitung zu finden. Falls es tatsächlich gelänge, ein bei gewöhnlicher Umgebungstemperatur supraleitendes Material zu finden, würde dies höchstwahrscheinlich die moderne Technik tiefgreifend verändern.

Die heutige (07.07.2017) Veröffentlichung in "Science":
"Discovery of orbital-selective Cooper pairing in FeSe", DOI: 10.1126/science.aal1575

Weitere Informationen:

Dr. Andreas Kreisel
Institut für Theoretische Physik
Telefon: +49 341 97-32461
E-Mail: kreisel@itp.uni-leipzig.de
Web: http://www.physik.uni-leipzig.de/~kreisel/

Weitere Informationen:

http://science.sciencemag.org/content/357/6346/75 "Discovery of orbital-selective Cooper pairing in FeSe", Artikel in der Fachzeitschrift Science

Katrin Henneberg | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

nachricht Wie zerfallen kleinste Bleiteilchen?
23.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics