Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein wichtiger Schritt in Richtung Quantencomputer

23.08.2011
Forscher verschränken erstmals Ionen mittels Mikrowellen

Einer Forschergruppe am National Institute of Standards and Technology (NIST) in Boulder, USA, ist es gelungen, Ionen mittels Mikrowellen für den Einsatz in einem Quantencomputer zu verschränken. Wie das Wissenschaftsmagazin Nature berichtet, haben die Wissenschaftler damit eine wichtige Methode für die mögliche Realisierung eines integrierten Quantencomputers mit Ionen entwickelt (Microwave quantum logic gates for trapped ions, Nature 476, 181-184, 2011, doi:10.1038/nature10290).


Experimenteller Aufbau. Die "Chip Falle" befindet sich in der Glasküvette in der Mitte des Bildes und ist mit grünem Licht angestrahlt. UV-Laserstrahlen zur Kühlung und Detektion der Ionen sind in blau visualisiert (normalerweise unsichtbar). Foto: Yves Colombo, National Institute of Standards and Technology

Christian Ospelkaus, seit Dezember 2010 Professor im Exzellenzcluster QUEST (Centre for Quantum Engineering and Space-Time Research) an der Leibniz Universität Hannover und an der Physikalisch-Technischen Bundesanstalt in Braunschweig, hat das Experiment mit seinen Kollegen am NIST durchgeführt.

Verschränkung ist eine faszinierende Konsequenz der Quantenmechanik. In unserem Alltag gilt es als selbstverständlich, dass zum Beispiel zwei gemeinsam geworfene Münzen unabhängig voneinander jede für sich zufällig „Kopf oder Zahl“ zeigen. In der Welt der Quantenmechanik könnten die beiden Münzen nun so manipuliert werden, dass, wenn eine Münze Zahl oder Kopf zeigt, die andere jeweils genau das gleiche Ergebnis liefert, und umgekehrt! Man spricht dann von einer Verschränkung der beiden Münzen oder – wenn man „Kopf oder Zahl“ wie in einem Computer mit den Werten Null und Eins identifiziert – auch von einem sogenannten verschränkenden Quantenlogikgatter. Solche verschränkenden Gatteroperationen sind ein wesentlicher Bestandteil eines Quantencomputers, der eines Tages bestimmte Probleme in Physik, Mathematik und Kryptographie (Ver- und Entschlüsselung) wesentlich schneller lösen könnte als der schnellste herkömmliche Supercomputer.

Ionen, also einzelne elektrisch geladene Atome, sind eines der experimentell am weitesten fortgeschrittenen Quantensysteme auf dem Weg zu einem realistischen Quantencomputer. In einer Reihe von grundlegenden Experimenten, die am NIST und in anderen Gruppen weltweit durchgeführt worden sind, konnten Ionen als Quantenbits, abgekürzt Qubits, mit Hilfe von Laserstrahlen bereits erfolgreich verschränkt werden. Die NIST Forschergruppe hat nun gezeigt, dass man solche Operationen nicht nur mit einem komplexen, raumfüllenden Lasersystem realisieren kann, sondern auch mit miniaturisierter Mikrowellenelektronik, wie sie zum Beispiel in Mobiltelefonen Verwendung findet. Um die Verschränkung zu erzeugen, integrieren die Physiker die Mikrowellenquelle in die Elektroden einer so genannten Chipfalle, einer mikroskopischen chipartigen Struktur zur Speicherung und Manipulation der Ionen in einer Vakuumzelle. „Weil Mikrowellenfelder unkomplizierter und in einer einfacher kontrollierbaren Weise erzeugt werden können als Laserstrahlen, könnte diese Methode uns helfen, leistungsfähigere und fehlertolerantere Experimente zu bauen“, erklärt Prof. Christian Ospelkaus.

In ihrem Experiment haben die Forscher die Erfolgsquote bei der Verschränkung charakterisiert und gezeigt, dass die Verschränkung der Ionen mit Mikrowellen in 76 Prozent aller Fälle funktioniert. Die bereits seit mehreren Jahren in der Forschung verwendeten laserbasierten Quantenlogikgatter sind mit einer Quote von 99,3 Prozent derzeit noch besser als die Gatter auf Basis von Mikrowellen. Das neue Experiment hat aber einen ganz entscheidenden Vorteil: Es beansprucht nur ungefähr ein Zehntel des Platzes eines Laser-Experiments und ist auf Basis dieses Pionierexperimentes noch deutlich optimierbar. In ihrer Veröffentlichung zeigt die Forschergruppe eine Reihe von Verbesserungsmöglichkeiten auf, welche die Erfolgsquote weiter steigern könnte. „Dass wir die Kontrolle der Qubits mit Hilfe der Mikrowellentechnik in die Fallenstruktur integriert haben und dadurch den Aufbau eines riesigen Lasersystems vermieden haben, ist ein wichtiger Schritt. In Zukunft könnten so durch diese Methode mehr und mehr Qubits verarbeiten werden“, so Ospelkaus weiter.

Mit seiner neuen Forschungsgruppe im Exzellenzcluster QUEST entwickelt Christian Ospelkaus ein mikroskopisches experimentelles Modellsystem, das zum besseren Verständnis von Quantenvielteilchensystemen beitragen soll. Die Mikrowellen-Quantenlogiktechniken, die er am NIST entwickelt hat, sind dabei ein wichtiger Baustein. Die Gruppe beschäftigt sich auch mit Anwendungen für fundamentale Präzisionsmessungen.

Die Forschungsarbeiten am NIST wurden unterstützt von der United States Intelligence Advanced Research Projects Activity (IARPA), Office of Naval Research (ONR), der Defense Advanced Research Projects Agency (DARPA), der National Security Agency (NSA) und Sandia National Laboratories.

Hinweis an die Redaktion:
Für weitere Informationen stehen Ihnen Prof. Dr. Christian Ospelkaus unter Telefon +49 511 762 17644 oder per E-Mail unter christian.ospelkaus@iqo.uni-hannover.de sowie Dr. Ude Cieluch, QUEST Kommunikation, unter Telefon +49 511 762 17481 oder per E-Mail unter ude.cieluch@quest.uni-hannover.de gerne zur Verfügung.

Der Exzellenzcluster QUEST (Centre for Quantum Engineering and Space-Time-Research) wird seit November 2007 innerhalb der Exzellenzinitiative von Bund und Ländern gefördert. Die Hauptforschungsbereiche des Clusters sind das Quantenengineering und die Raum-Zeit-Forschung. Beteiligt sind sechs Institute der Leibniz Universität Hannover sowie die folgenden externen Partner: Das Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) mit dem Gravitationswellendetektor GEO600, das Laser Zentrum Hannover e.V., die Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig und das Zentrum für Angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen.

Jessica Lumme | idw
Weitere Informationen:
http://www.uni-hannover.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops