Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein wichtiger Schritt in Richtung Quantencomputer

23.08.2011
Forscher verschränken erstmals Ionen mittels Mikrowellen

Einer Forschergruppe am National Institute of Standards and Technology (NIST) in Boulder, USA, ist es gelungen, Ionen mittels Mikrowellen für den Einsatz in einem Quantencomputer zu verschränken. Wie das Wissenschaftsmagazin Nature berichtet, haben die Wissenschaftler damit eine wichtige Methode für die mögliche Realisierung eines integrierten Quantencomputers mit Ionen entwickelt (Microwave quantum logic gates for trapped ions, Nature 476, 181-184, 2011, doi:10.1038/nature10290).


Experimenteller Aufbau. Die "Chip Falle" befindet sich in der Glasküvette in der Mitte des Bildes und ist mit grünem Licht angestrahlt. UV-Laserstrahlen zur Kühlung und Detektion der Ionen sind in blau visualisiert (normalerweise unsichtbar). Foto: Yves Colombo, National Institute of Standards and Technology

Christian Ospelkaus, seit Dezember 2010 Professor im Exzellenzcluster QUEST (Centre for Quantum Engineering and Space-Time Research) an der Leibniz Universität Hannover und an der Physikalisch-Technischen Bundesanstalt in Braunschweig, hat das Experiment mit seinen Kollegen am NIST durchgeführt.

Verschränkung ist eine faszinierende Konsequenz der Quantenmechanik. In unserem Alltag gilt es als selbstverständlich, dass zum Beispiel zwei gemeinsam geworfene Münzen unabhängig voneinander jede für sich zufällig „Kopf oder Zahl“ zeigen. In der Welt der Quantenmechanik könnten die beiden Münzen nun so manipuliert werden, dass, wenn eine Münze Zahl oder Kopf zeigt, die andere jeweils genau das gleiche Ergebnis liefert, und umgekehrt! Man spricht dann von einer Verschränkung der beiden Münzen oder – wenn man „Kopf oder Zahl“ wie in einem Computer mit den Werten Null und Eins identifiziert – auch von einem sogenannten verschränkenden Quantenlogikgatter. Solche verschränkenden Gatteroperationen sind ein wesentlicher Bestandteil eines Quantencomputers, der eines Tages bestimmte Probleme in Physik, Mathematik und Kryptographie (Ver- und Entschlüsselung) wesentlich schneller lösen könnte als der schnellste herkömmliche Supercomputer.

Ionen, also einzelne elektrisch geladene Atome, sind eines der experimentell am weitesten fortgeschrittenen Quantensysteme auf dem Weg zu einem realistischen Quantencomputer. In einer Reihe von grundlegenden Experimenten, die am NIST und in anderen Gruppen weltweit durchgeführt worden sind, konnten Ionen als Quantenbits, abgekürzt Qubits, mit Hilfe von Laserstrahlen bereits erfolgreich verschränkt werden. Die NIST Forschergruppe hat nun gezeigt, dass man solche Operationen nicht nur mit einem komplexen, raumfüllenden Lasersystem realisieren kann, sondern auch mit miniaturisierter Mikrowellenelektronik, wie sie zum Beispiel in Mobiltelefonen Verwendung findet. Um die Verschränkung zu erzeugen, integrieren die Physiker die Mikrowellenquelle in die Elektroden einer so genannten Chipfalle, einer mikroskopischen chipartigen Struktur zur Speicherung und Manipulation der Ionen in einer Vakuumzelle. „Weil Mikrowellenfelder unkomplizierter und in einer einfacher kontrollierbaren Weise erzeugt werden können als Laserstrahlen, könnte diese Methode uns helfen, leistungsfähigere und fehlertolerantere Experimente zu bauen“, erklärt Prof. Christian Ospelkaus.

In ihrem Experiment haben die Forscher die Erfolgsquote bei der Verschränkung charakterisiert und gezeigt, dass die Verschränkung der Ionen mit Mikrowellen in 76 Prozent aller Fälle funktioniert. Die bereits seit mehreren Jahren in der Forschung verwendeten laserbasierten Quantenlogikgatter sind mit einer Quote von 99,3 Prozent derzeit noch besser als die Gatter auf Basis von Mikrowellen. Das neue Experiment hat aber einen ganz entscheidenden Vorteil: Es beansprucht nur ungefähr ein Zehntel des Platzes eines Laser-Experiments und ist auf Basis dieses Pionierexperimentes noch deutlich optimierbar. In ihrer Veröffentlichung zeigt die Forschergruppe eine Reihe von Verbesserungsmöglichkeiten auf, welche die Erfolgsquote weiter steigern könnte. „Dass wir die Kontrolle der Qubits mit Hilfe der Mikrowellentechnik in die Fallenstruktur integriert haben und dadurch den Aufbau eines riesigen Lasersystems vermieden haben, ist ein wichtiger Schritt. In Zukunft könnten so durch diese Methode mehr und mehr Qubits verarbeiten werden“, so Ospelkaus weiter.

Mit seiner neuen Forschungsgruppe im Exzellenzcluster QUEST entwickelt Christian Ospelkaus ein mikroskopisches experimentelles Modellsystem, das zum besseren Verständnis von Quantenvielteilchensystemen beitragen soll. Die Mikrowellen-Quantenlogiktechniken, die er am NIST entwickelt hat, sind dabei ein wichtiger Baustein. Die Gruppe beschäftigt sich auch mit Anwendungen für fundamentale Präzisionsmessungen.

Die Forschungsarbeiten am NIST wurden unterstützt von der United States Intelligence Advanced Research Projects Activity (IARPA), Office of Naval Research (ONR), der Defense Advanced Research Projects Agency (DARPA), der National Security Agency (NSA) und Sandia National Laboratories.

Hinweis an die Redaktion:
Für weitere Informationen stehen Ihnen Prof. Dr. Christian Ospelkaus unter Telefon +49 511 762 17644 oder per E-Mail unter christian.ospelkaus@iqo.uni-hannover.de sowie Dr. Ude Cieluch, QUEST Kommunikation, unter Telefon +49 511 762 17481 oder per E-Mail unter ude.cieluch@quest.uni-hannover.de gerne zur Verfügung.

Der Exzellenzcluster QUEST (Centre for Quantum Engineering and Space-Time-Research) wird seit November 2007 innerhalb der Exzellenzinitiative von Bund und Ländern gefördert. Die Hauptforschungsbereiche des Clusters sind das Quantenengineering und die Raum-Zeit-Forschung. Beteiligt sind sechs Institute der Leibniz Universität Hannover sowie die folgenden externen Partner: Das Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) mit dem Gravitationswellendetektor GEO600, das Laser Zentrum Hannover e.V., die Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig und das Zentrum für Angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen.

Jessica Lumme | idw
Weitere Informationen:
http://www.uni-hannover.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lange Speicherung photonischer Quantenbits für globale Teleportation
13.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Einmal durchleuchtet – dreifacher Informationsgewinn
11.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften