Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn es sich reibt, sind die Atome schuld

09.07.2015

Reibung und Verschleiß spielen praktisch in jedem Industriebereich eine wichtige Rolle. AC²T und TU Wien konnten nun wichtige Gesetze der Reibung auf atomarer Ebene erklären.

Wenn man einen Schlitten über den Asphalt zieht, dann macht er hässliche Geräusche und wird von der Reibkraft gebremst. Wenn sich dann noch dazu jemand auf den Schlitten setzt, wird die Reibung noch viel größer und man wird ihn kaum noch ziehen können.


Eine zufällig geformte raue Oberfläche, vor dem Schleifprozess

TU Wien


Nach dem Reibungsvorgang sieht die Oberfläche ganz anders aus.

TU Wien

Je größer die Last, umso größer die Reibkraft – das ist ein wohlbekanntes Gesetz der Reibungslehre. Warum es allerdings einen so einfachen, linearen Zusammenhang zwischen Last und Reibung gibt, war bisher nicht klar.

Ein Team des Exzellenzzentrums für Tribologie AC2T research GmbH (kurz AC²T) und der TU Wien konnte diese Frage nun auf mikroskopischer Ebene klären: Entscheidend ist die effektive Kontaktfläche zwischen den beiden aneinander reibenden Objekten.

Erstaunlich ist, dass sich damit sogar das Reibverhalten bei Materialverschleiß erklären lässt. Auch in diesem Fall ist die effektive Kontaktfläche auf atomarer Skala die entscheidende Größe. Die Arbeit wurde nun im Fachjournal „Physical Review Letters“ veröffentlicht.

Tribologie: Reibung gibt es überall

Tribologie ist die Wissenschaft, die sich mit Reibung, Schmierung und Verschleiß beschäftigt. In fast allen Bereichen der Industrie hat man mit tribologischen Phänomenen zu tun – von der Reibung eines Zylinderkolbens im Motor über Bremsen bis hin zu Schienen, Seilbahnen oder Papiermaschinen.

Am Exzellenzzentrum für Tribologie (bzw. innerhalb des Schirmprojektes COMET-K2-Zentrum XTribology, hervorgegangen aus der TU Wien, gefördert vom Bund im Wege der österreichischen Forschungsförderungsgesellschaft FFG sowie den Bundesländern Niederösterreich, Vorarlberg und Wien), werden Reibung und Verschleiß in enger Zusammenarbeit mit der Wirtschaft wissenschaftlich untersucht.

Reibung auf mikroskopischer Skala

Um die tieferen Grundlagen der Reibung zu verstehen, muss man die Reibungsoberflächen manchmal auf atomarer Ebene untersuchen. AC²T und die TU Wien entwickelten Computersimulationen, in denen Oberflächen auf der Größenskala von Nanometern modelliert wurden. In der Simulation kann man diese dann gegeneinander bewegen und somit die Reibung und den Materialabtrag nachstellen.

Die Reibung beruht darauf, dass die beiden aufeinander aufliegenden Oberflächen nicht ganz glatt sind. Einzelne Rauheitsspitzen kommen miteinander in Kontakt. „Wenn die Last gering ist, besteht nur physischer Kontakt zwischen den äußersten Unebenheiten der beiden Flächen“, erklärt Stefan Eder (AC²T), der Erstautor der Studie. „Wirkt von oben eine größere Last ein, werden die beiden Flächen enger aneinandergedrückt, und die effektive Kontaktfläche wird größer.“

Auf die Fläche kommt es an

Je größer die Kontaktfläche ist, auf der die Atome beider Objekte wechselwirken, umso größer ist auch die Reibkraft. Der einfache lineare Zusammenhang zwischen Last und Reibung kommt also daher, dass mehr Last zu einer immer größeren Zahl von Atomen führt, die miteinander eng wechselwirken können.

„Im Experiment ist es praktisch unmöglich, die Größe der effektiven Kontaktfläche zu messen“, sagt Stefan Eder. „In unserer Computersimulation können wir uns aber genau ansehen, wie die Nanostrukturen ineinandergreifen und welche Kontaktflächen sich ergeben. So können wir zeigen, dass es tatsächlich einen linearen Zusammenhang zwischen Kontaktfläche und Kraft gibt.“

Die Rechnungen erklären auch, warum die Reibung besonders groß ist, wenn eckige Partikel an einer Oberfläche reiben, und etwas geringer, wenn runde Partikel dominieren: Eckige Partikel führen zu einer größeren effektiven Kontaktfläche, runde Partikel berühren die raue Oberfläche fast nur an einem Punkt. Außerdem konnte gezeigt werden, dass der einfache Zusammenhang zwischen Kontaktfläche und Reibkraft auch dann noch gegeben ist, wenn es zu deutlichem Materialverschleiß an der Oberfläche kommt.

„Dass dieses recht einfache Bild tatsächlich auf mikroskopischer Skala seine Gültigkeit behält, ist überraschend“, meint Stefan Eder. „Mikroskopische Berechnungen dieser Vorgänge geben uns nun auch die Möglichkeit, kompliziertere Fälle zu verstehen, die sich nicht mit einem so einfachen Zusammenhang zwischen Last und Reibkraft erklären lassen.“

Ein Beispiel dafür ist etwa das Rasterkraftmikroskop: Eine feine Nadel auf einem winzigen Hebel wird über eine raue Oberfläche gezogen, nur einige wenige Atome in der äußersten Spitze der Nadel kommen in Kontakt mit der Oberfläche. „Reibung und Last sind nur direkt proportional, wenn man die Reibung als statistischen Effekt beschreiben kann, der durch eine große Zahl von Kontaktpunkten verursacht wird“, sagt Stefan Eder. „Beim Rasterkraftmikroskop hat man im Idealfall nur einen Kontaktpunkt, da muss man tatsächlich die Wechselwirkungen zwischen den äußersten Atomen untersuchen.“

Die Berechnungen wurden nun im Fachjournal „Physical Review Letters“ publiziert. Die theoretischen Arbeiten werden bei AC²T und an der TU Wien noch weitergeführt – die Erkenntnisse daraus sollen dann auch in die vielen industrienahen tribologischen Projekte einfließen, an denen im Exzellenzzentrum gearbeitet wird, beispielsweise zu den Themen Hochglanzpolieren oder Verschleißprozesse mit Nanopartikeln.

Weitere Informationen:

http://Bilderdownload: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2015/tribologie
http://Originalpublikation: "Applicability of Macroscopic Wear and Friction Laws on the Atomic Length Scale": http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.025502

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften