Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn der Donut zum Apfel wird

23.09.2014

In Experimenten mit dem «Wundermaterial» Graphen konnten ETH-Forscher ein Phänomen nachweisen, das ein russischer Physiker vor über 50 Jahren vorhergesagt hatte. Sie untersuchten eine Schichtstruktur, von der sich die Fachleute ungeahnte Möglichkeiten erhoffen.

Anastasia Varlet arbeitet als Doktorandin in der Forschungsgruppe von ETH-Professor Klaus Ensslin am Laboratorium für Festkörperphysik. Ihr gelang es, zwei Forschungspapers in der renommierten amerikanischen Fachzeitschrift «Physical Review Letters» hintereinander zu publizieren.

Beide Arbeiten stützen sich auf Messungen am selben elektronischen Bauelement, einer Sandwichkonstruktion mit Graphen – einem Material aus Kohlenstoff, das eine bienenwabenförmigen Schicht bildet, die nur ein Atom dick ist. Einlagiges Graphen ist extrem stabil, elastisch und leitfähig.

Besonders interessant für elektronische Anwendungen wird das «Wundermaterial», wenn man zwei Schichten übereinander legt. Das doppellagige Graphen wird zum Halbleiter, mit dem sich elektronische Schalter konstruieren lassen.

Die Qualität von Varlets Bauelement aus doppellagigem Graphen war so gut, dass die Forscherin bei ihren Messungen ein völlig unerwartetes Resultat erzielte.

«Wir konnten einen sogenannten Lifshitz-Übergang nachweisen», sagt sie. Um zu erklären, worum es sich dabei handelt, greifen die Physiker zu Kaffeetasse und Wasserglas. Die Tasse hat einen Henkel mit einem Loch. Daher ist es möglich, ein geometrisch definiertes Objekt von der Form einer Tasse mit mathematischen Funktionen in einen Donut zu verformen. Auch ein solcher besitzt ein Loch. Ein Glas hingegen lässt sich wegen des fehlenden Lochs nicht in einen Donut verformen. Mathematisch gesprochen hat eine Tasse dieselbe Topologie wie ein Donut. «Ein Glas hingegen ist topologisch das Gleiche wie ein Apfel», erklärt Ensslin.

Verändert man die Topologie eines Objekts, kann man dessen Zweckmässigkeit verbessern, zum Beispiel wenn man einen Becher in eine Tasse mit Henkel verwandelt. Eigentlich ist das gar nicht möglich. Dennoch gelang nun genau dies den ETH-Forschern mit Hilfe von doppellagigem Graphen. Denn ein Lifshitz-Übergang ist ein Wechsel von einer Topologie zu einer anderen.

Benannt ist er nach einem russischen Physiker, der diese Möglichkeit 1960 vorausgesagt hat. Allerdings geht es dabei nicht um Objekte in unserer normalen Umgebung. Vielmehr untersuchen die Physiker bei elektronischen Materialien eine abstraktere Topologie von Flächen, mit denen die Energiezustände der Elektronen beschrieben werden. Insbesondere betrachten die Forscher Flächen konstanter Energie, denn diese bestimmen die Leitfähigkeit des Materials und damit deren Anwendungspotential.

Drei Inseln im See

Um das mathematische Konzept dieser Energieflächen anschaulich zu machen, greift Ensslin wieder zu einem Vergleich: «Man kann sich eine hügelige Landschaft vorstellen, bei der sich die Täler mit elektrischen Ladungen füllen, wie wenn bei Regen das Wasser zwischen den Hügeln steigt.» So wird aus einem anfänglichen Isolator ein leitendes Material. Hört es auf zu regnen, hat das Wasser einen See gebildet, aus dem einzelne Berge wie Inseln herausragen.

Genau dies beobachtete ETH-Doktorandin Varlet beim Experiment mit dem doppellagigen Graphen: Bei geringem Wasserstand gibt es drei voneinander unabhängige aber äquivalente Seen. Mit zunehmendem Wasserstand verbinden sich die drei Seen zu einem grossen Ozean. «Die Topologie hat sich völlig geändert», schliesst Varlet. So, als wäre aus dem Donut ein Apfel geworden.

Bisher fehlte das richtige Material, dass Wissenschaftler einen solchen Lifshitz-Übergang im Experiment zeigen konnten. Metalle eignen sich für den Nachweis nicht. Und auch das ETH-Team war sich zuerst gar nicht bewusst, dass es einen solchen gefunden hatte. «Wir beobachteten in unseren Messungen mit der Graphen-Sandwichkonstruktion etwas Seltsames, das wir nicht erklären konnten», sagt Varlet. Bei Diskussionen konnte ein russischer Theoretiker, Vladimir Falko, ihre Messungen deuten.

Billiges Rohmaterial

Zur Herstellung ihrer Sandwichkonstruktion umschloss Varlet die beiden Graphenschichten mit zwei Lagen aus Bornitrid, einem Material, das sonst zu Schmierzwecken verwendet wird und eine extrem glatte Oberfläche hat. Beide Stoffe sind billig, doch die erforderliche Arbeit im Reinraum ist aufwendig.

Nur wenn die verwendeten Kohlenstoffflocken äusserst sauber sind, lässt sich daraus ein funktionierendes Bauelement fabrizieren. «Ein Grossteil meiner Arbeit besteht in der Reinigung unseres Graphens», sagt Varlet. Das Besondere an ihren Proben sei, dass diese gigantisch starken, elektrischen Feldern standhielten, sagt ihr Chef. Erst so wurden die jetzt publizierten Arbeiten möglich.

Über eine praktische Anwendung des beobachteten Phänomens lässt sich zurzeit nur vage spekulieren. So ist die Topologie von Quantenzuständen eine Möglichkeit, diese von ihrer Umgebung zu entkoppeln und damit eventuell besonders stabile Quantenzustände zu realisieren, die dann für Informationsverarbeitung nützlich sein könnten. Doch einstweilen geht es den Forschern vor allem um das bessere Verständnis der Bauelemente aus doppellagigem Graphen.

Nationale und europäische Zusammenarbeit

Das Team ist Teil des Forschungsverbundes Quantum Science and Technology (QSIT) an dem neben der ETH Zürich auch Gruppen von den Universitäten Basel, Lausanne und Genf sowie von IBM mitwirken. Klaus Ensslin ist Direktor dieses Nationalen Forschungsschwerpunkts. Sein Team ist auch am EU-Projekt «Graphene Flagship» beteiligt. «Dabei geht es um die Entwicklung völlig neuer Materialien», sagt der ETH-Professor. Im Vordergrund stehen Strukturen, die aus verschiedenen dünnsten Schichten aufgebaut sind, wie das Element von Anastasia Varlet.

Literaturhinweis

Varlet A, Bischoff D, Simonet P, Watanabe K, Taniguchi T, Ihn T, Ensslin K, Mucha-Kruczyński M, Falko VI: Anomalous Sequence of Quantum Hall Liquids Revealing a Tunable Lifshitz Transition in Bilayer Graphene. Physical Review Letters 2014, 113: 116602. DOI: 10.1103/PhysRevLett.113.116602

Varlet A, Liu MH, Krueckl V, Bischoff D, Simonet P, Watanabe K, Taniguchi T, Richter K, Ensslin K, Ihn T: Fabry-Pérot Interference in Gapped Bilayer Graphene with Broken Anti-Klein Tunneling. Physical Review Letters 2014, 113: 116601 DOI: 10.1103/PhysRevLett.113.116601

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2014/09/wenn-der-d...

Peter Rüegg | ETH Zürich

Weitere Berichte zu: Bauelement ETH Experiment Graphen Physiker Topologie Wasserstand

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie