Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit einzigartiges Elektronenmikroskop der Superlative geht an der TU Graz in Betrieb

28.06.2011
60 Jahre Elektronenmikroskopie in der Steiermark, 200 Jahre TU Graz und ein ganz besonderes Highlight: Mit dem ASTEM (Austrian Scanning Transmission Electron Microscope) können Wissenschafter am Zentrum für Elektronenmikroskopie Graz sowie am Institut für Elektronenmikroskopie und Feinstrukturforschung der TU Graz künftig in völlig neue Dimensionen vordringen.

Das Forschungsgerät der Superlative ist mit seinen Messungen mit bisher ungekannter Genauigkeit weltweit einzigartig und bietet damit völlig neue Chancen für die Materialforschung am Wissenschafts- und Wirtschaftsstandort Steiermark und darüber hinaus.

Werkstoffe weiter verbessern, neue Pharmazeutika entwickeln oder elektronische Bauteile perfektionieren – die Palette möglicher Anwendungen der Nanotechnologie ist breit. Basis für neue Entwicklungen ist die Nanoanalytik: Hier arbeiten Forscher daran, Strukturen und Eigenschaften von Materialien besser zu verstehen. „Werkzeug“ dazu sind modernste Elektronenmikroskope. Mit ASTEM rückt die Grazer Forschung im Bereich Elektronenmikroskopie in die internationale Spitzenliga auf. „Ausgezeichnete Leistungen braucht adäquate Ausstattung. Mit dem neuen ASTEM gibt es an der TU Graz ab sofort ein Werkzeug der Superlative für die Nanowissenschaften“, zeigt sich TU-Rektor Hans Sünkel stolz.

Milliardstel und Millionstel Millimeter

Das erste Elektronenmikroskop in der Steiermark wurde vor genau 60 Jahren in Betrieb genommen, zum Jubiläum folgt nun ein neuer Meilenstein. „Ein Rastertransmissionselektronenmikroskop ist ein spezieller Typ eines Elektronenmikroskops. Ein Elektronenstrahl fokussiert auf eine dünne Probe und „rastert“ zeilenweise ein bestimmtes Bildfeld ab“, erläutert Ferdinand Hofer, Leiter des Instituts für Elektronenmikroskopie und Feinstrukturforschung und Koordinator des Forschungsschwerpunkts „Advanced Materials Science“ der TU Graz, das Grundprinzip.

ASTEM ermöglicht Messungen von bisher ungekannter Exaktheit: Ein mit 70 Picometern – ein Picometer entspricht einem Milliardstel Millimeter – fast unvorstellbar feiner Elektronenstrahl tastet die Oberfläche des Stoffs ab. Abstände zwischen Atomen von 0,14 Nanometern – ein Nanometer entspricht wiederum einem Millionstel Millimeter – sind so messbar. Möglich wird das durch ein neues technisches Prinzip: den „Super-X“-Röntgendetektor, der international erstmals an der TU Graz zu finden ist. Mit diesem besonders empfindlichen Röntgendetektor können die Forscher sogar feststellen, aus welchen Elementen sich eine Probe zusammensetzt. „Die atomar aufgelöste Analytik erlaubt uns, die Art eines Atoms zu bestimmen: Atompositionen werden erkennbar, wir können auch die chemische Ordnungszahl zuordnen“, so Hofer.

Wissenschaft und Wirtschaft profitieren

Der Nutzen für die Forschung: Völlig neue Möglichkeiten, um das Innerste von Materialien, also ihre strukturellen und funktionellen Eigenschaften besser verstehen zu können – eine wichtige Basis um Materialien für alle Bereiche des Lebens und für Anwendungen in Wirtschaft und Industrie erfolgreich weiter zu entwickeln und damit ein Schlüssel für den technologischen Fortschritt. Projekte in Kooperation mit Unternehmen am Wissenschafts- und Wirtschaftsstandort Steiermark sind bereits in der Pipeline: Computerchips zu neuen Spitzenleistungen optimieren und materialschädigende Nano-Ausscheidungen in Stählen vermeiden sind die Themen. Die TU Graz stärkt so ihren Schwerpunkt „Advanced Materials Science“ weiter – das ist eines von fünf definierten Stärkefeldern, die das Profil der Universität in Forschung und Lehre prägen.

Forschung via „Fernbedienung“

Das TU-Institut für Elektronenmikroskopie und Feinstrukturforschung nutzt das neue Großgerät gemeinsam mit dem Zentrum für Elektronenmikroskopie Graz, einem Mitglied der Austrian Cooperative Research (ACR), der Vereinigung der Kooperativen Forschungsinstitute der österreichischen Wirtschaft. Rund zehn Personen arbeiten in der ersten Phase an ASTEM, weitere sollen folgen. Profitieren sollen künftig aber auch Wissenschafter, die selbst nicht vor Ort sind: Das Gerät kann auch mittels „Fernbedienung“ genutzt werden, lediglich die Probe muss vor Ort sein. Damit eröffnen sich neue, „grenzenlose“ Möglichkeiten der Zusammenarbeit. Damit das Bild nicht „wackelt“, steht ASTEM streng geschützt vor Schall und Temperatureinwirkung in einem speziell abgeschirmten Raum.

Finanziert wurde das vier Millionen Euro schwere Messinstrument vom Verein zur Förderung der Elektronenmikroskopie, der FFG, dem Land Steiermark, der Steirischen Wirtschaftsförderung und der TU Graz.

Technische Daten im Überblick:
Typ: FEI Titan (60 - 300 kV)
Auflösung: 70 Picometer (= 0,07 Nanometer)
Standhöhe: 3,7 m
Standfläche: 1,7 x 1,7 m
Gewicht: > 3 Tonnen
arbeitet im Rastertransmissionsbetrieb mit X-FEG Kathode, Korrektor für Öffnungsfehler, Monochromator, Energiefilter und neuartigem Röntgendetektor ChemiSTEM
Rückfragen:
Univ.-Prof. Dipl.-Ing. Dr.techn. Ferdinand Hofer
Institut für Elektronenmikroskopie
E-Mail: ferdinand.hofer@tugraz.at
Tel.: +43 (0) 316 873 8820
Mobil: +43 (0) 664 40 16 225

Alice Senarclens de Grancy | Technische Universität Graz
Weitere Informationen:
http://www.tugraz.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie