Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit einzigartiges Elektronenmikroskop der Superlative geht an der TU Graz in Betrieb

28.06.2011
60 Jahre Elektronenmikroskopie in der Steiermark, 200 Jahre TU Graz und ein ganz besonderes Highlight: Mit dem ASTEM (Austrian Scanning Transmission Electron Microscope) können Wissenschafter am Zentrum für Elektronenmikroskopie Graz sowie am Institut für Elektronenmikroskopie und Feinstrukturforschung der TU Graz künftig in völlig neue Dimensionen vordringen.

Das Forschungsgerät der Superlative ist mit seinen Messungen mit bisher ungekannter Genauigkeit weltweit einzigartig und bietet damit völlig neue Chancen für die Materialforschung am Wissenschafts- und Wirtschaftsstandort Steiermark und darüber hinaus.

Werkstoffe weiter verbessern, neue Pharmazeutika entwickeln oder elektronische Bauteile perfektionieren – die Palette möglicher Anwendungen der Nanotechnologie ist breit. Basis für neue Entwicklungen ist die Nanoanalytik: Hier arbeiten Forscher daran, Strukturen und Eigenschaften von Materialien besser zu verstehen. „Werkzeug“ dazu sind modernste Elektronenmikroskope. Mit ASTEM rückt die Grazer Forschung im Bereich Elektronenmikroskopie in die internationale Spitzenliga auf. „Ausgezeichnete Leistungen braucht adäquate Ausstattung. Mit dem neuen ASTEM gibt es an der TU Graz ab sofort ein Werkzeug der Superlative für die Nanowissenschaften“, zeigt sich TU-Rektor Hans Sünkel stolz.

Milliardstel und Millionstel Millimeter

Das erste Elektronenmikroskop in der Steiermark wurde vor genau 60 Jahren in Betrieb genommen, zum Jubiläum folgt nun ein neuer Meilenstein. „Ein Rastertransmissionselektronenmikroskop ist ein spezieller Typ eines Elektronenmikroskops. Ein Elektronenstrahl fokussiert auf eine dünne Probe und „rastert“ zeilenweise ein bestimmtes Bildfeld ab“, erläutert Ferdinand Hofer, Leiter des Instituts für Elektronenmikroskopie und Feinstrukturforschung und Koordinator des Forschungsschwerpunkts „Advanced Materials Science“ der TU Graz, das Grundprinzip.

ASTEM ermöglicht Messungen von bisher ungekannter Exaktheit: Ein mit 70 Picometern – ein Picometer entspricht einem Milliardstel Millimeter – fast unvorstellbar feiner Elektronenstrahl tastet die Oberfläche des Stoffs ab. Abstände zwischen Atomen von 0,14 Nanometern – ein Nanometer entspricht wiederum einem Millionstel Millimeter – sind so messbar. Möglich wird das durch ein neues technisches Prinzip: den „Super-X“-Röntgendetektor, der international erstmals an der TU Graz zu finden ist. Mit diesem besonders empfindlichen Röntgendetektor können die Forscher sogar feststellen, aus welchen Elementen sich eine Probe zusammensetzt. „Die atomar aufgelöste Analytik erlaubt uns, die Art eines Atoms zu bestimmen: Atompositionen werden erkennbar, wir können auch die chemische Ordnungszahl zuordnen“, so Hofer.

Wissenschaft und Wirtschaft profitieren

Der Nutzen für die Forschung: Völlig neue Möglichkeiten, um das Innerste von Materialien, also ihre strukturellen und funktionellen Eigenschaften besser verstehen zu können – eine wichtige Basis um Materialien für alle Bereiche des Lebens und für Anwendungen in Wirtschaft und Industrie erfolgreich weiter zu entwickeln und damit ein Schlüssel für den technologischen Fortschritt. Projekte in Kooperation mit Unternehmen am Wissenschafts- und Wirtschaftsstandort Steiermark sind bereits in der Pipeline: Computerchips zu neuen Spitzenleistungen optimieren und materialschädigende Nano-Ausscheidungen in Stählen vermeiden sind die Themen. Die TU Graz stärkt so ihren Schwerpunkt „Advanced Materials Science“ weiter – das ist eines von fünf definierten Stärkefeldern, die das Profil der Universität in Forschung und Lehre prägen.

Forschung via „Fernbedienung“

Das TU-Institut für Elektronenmikroskopie und Feinstrukturforschung nutzt das neue Großgerät gemeinsam mit dem Zentrum für Elektronenmikroskopie Graz, einem Mitglied der Austrian Cooperative Research (ACR), der Vereinigung der Kooperativen Forschungsinstitute der österreichischen Wirtschaft. Rund zehn Personen arbeiten in der ersten Phase an ASTEM, weitere sollen folgen. Profitieren sollen künftig aber auch Wissenschafter, die selbst nicht vor Ort sind: Das Gerät kann auch mittels „Fernbedienung“ genutzt werden, lediglich die Probe muss vor Ort sein. Damit eröffnen sich neue, „grenzenlose“ Möglichkeiten der Zusammenarbeit. Damit das Bild nicht „wackelt“, steht ASTEM streng geschützt vor Schall und Temperatureinwirkung in einem speziell abgeschirmten Raum.

Finanziert wurde das vier Millionen Euro schwere Messinstrument vom Verein zur Förderung der Elektronenmikroskopie, der FFG, dem Land Steiermark, der Steirischen Wirtschaftsförderung und der TU Graz.

Technische Daten im Überblick:
Typ: FEI Titan (60 - 300 kV)
Auflösung: 70 Picometer (= 0,07 Nanometer)
Standhöhe: 3,7 m
Standfläche: 1,7 x 1,7 m
Gewicht: > 3 Tonnen
arbeitet im Rastertransmissionsbetrieb mit X-FEG Kathode, Korrektor für Öffnungsfehler, Monochromator, Energiefilter und neuartigem Röntgendetektor ChemiSTEM
Rückfragen:
Univ.-Prof. Dipl.-Ing. Dr.techn. Ferdinand Hofer
Institut für Elektronenmikroskopie
E-Mail: ferdinand.hofer@tugraz.at
Tel.: +43 (0) 316 873 8820
Mobil: +43 (0) 664 40 16 225

Alice Senarclens de Grancy | Technische Universität Graz
Weitere Informationen:
http://www.tugraz.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise