Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was die Welt zusammenhält: "Klebeteilchen" für die Stabilität der Materie

22.07.2009
Physiker untersuchen das Verhalten von Gluonen bei einem kurzlebigen Materiezustand

Das Verhalten von Gluonen - das sind die Trägerteilchen der starken Wechselwirkung, die auf sub­atomarer Ebene für die Stabilität aller Materie sorgen - haben Physiker der Universität Heidelberg un­tersucht.

Dabei ist es ihnen gelungen, die Eigenschaften eines kurzlebigen Materiezustandes genauer zu beschreiben, der nach dem Beschleunigen schwerer Ionen auf sehr hohe Energien und dem Auf­einanderprallen der Partikel für extrem kurze Zeitintervalle auftritt. Die Ergebnisse dieser Forschun­gen, die auch theoretische Vorhersagen für künftige Experimente mit Bleiionen am Teilchenbeschleu­niger LHC in Genf (Schweiz) erlauben, wurden in den "Physical Review Letters" veröffentlicht.

Die Kerne der Atome sind aus Protonen und Neutronen aufgebaut. Diese sogenannten Baryonen be­stehen aus je drei Quarks als Elementarbausteinen. Zwischen den Quarks gibt es eine starke Wech­selwirkung - eine von vier Grundkräften in der Natur. Sie wird durch die sogenannten Gluonen ge­tra­gen. Als subatomare Klebeteilchen sind sie verantwortlich für die Anziehung der Quarks untereinander und damit indirekt auch für den Zusammenhalt von Neutronen und Protonen in den Atomkernen, also letztlich für die Stabilität der Materie. Vor 30 Jahren konnten Wissenschaftler am Forschungszentrum DESY in Hamburg die Existenz der Gluonen - von englisch glue für Klebstoff - nachweisen.

Inzwischen ist bekannt, dass die Dichte der Gluonen unter bestimmten Voraussetzungen - dazu gehören sehr hohe Energien der kollidierenden Partikel - stark anwächst. Dieser Effekt beruht auf der Selbstwechselwirkung der Klebeteilchen. Gluonen können sich jedoch nicht nur vermehren, sondern sich bei sehr hoher Dichte auch wieder vereinigen. In theoretischen Annahmen geht die Wissenschaft deshalb davon aus, dass dabei kurzfristig eine Sättigung erreicht wird: Es entsteht für ein Zeitintervall von 10-23 Sekunden - zum Vergleich: eine Nanosekunde sind 10-9 Sekunden - ein neuer Materiezu­stand, das Gluonenkondensat. Yacine Mehtar-Tani und Georg Wolschin vom Institut für Theo­retische Physik der Universität Heidelberg haben Anzeichen für das Gluon-Sättigungsverhalten untersucht.

Ihre Forschungen basieren auf den Arbeiten zahlreicher Wissenschaftler, die in den vergangenen Jah­ren das Verhalten der Gluonen im Detail studiert haben. Im Mittelpunkt der aktuellen Untersuchung stehen Baryonenverteilungen in Schwerionen-Reaktionen von Gold- und Bleikernen bei sehr hohen "relativistischen" Energien. Ein neu entwickeltes theoretisches Modell wurde dabei mit experimentellen Daten des europäischen Forschungszentrums CERN und des Brookhaven-Nationallaboratoriums in den USA verglichen.

Bei einer Kollision von Schwerionen entstehen aus der vorhandenen Energie Tausende stark wech­selwirkender Teilchen und ihre Antiteilchen. Die Differenz von Baryonen- und Antibaryonenverteilung wird als Funktion des Streuwinkels gemessen. Dabei sind die Ereignisse bei kleinen Winkeln, soge­nannten Vorwärtswinkeln, von besonderer Bedeutung. Bei bestimmten Streuwinkeln hat die Bary­onenverteilung Maxima, deren Lage von der Bildung des Gluonenkondensats abhängt. Durch eine präzise Lage-Messung lässt sich im Prinzip bestimmen, ob die Gluonen-Sättigung erreicht wird. Mit ihren Forschungen ist es den Heidelberger Physikern zugleich gelungen, die Eigenschaften des Gluonenkon­densats genauer zu bestimmen.

Die bisherigen Experimente ermöglichen bislang jedoch bei sehr hohen Energien keine komplette Messung der Maxima. Georg Wolschin: "Zwar können auf der Basis unserer Forschungsergebnisse auch aus den Messdaten für Baryonen bei großen Winkeln von etwa 90 Grad einige Rückschlüsse auf das Gluonenverhalten gezogen werden, aber die Messung der Maxima bei kleinen Winkeln wäre sehr viel aussagekräftiger." Sie wird allerdings auch bei künftigen Untersuchungen am LHC, so der Heidel­berger Wissenschaftler, nur nach einer Erweiterung der jetzigen Apparaturen möglich sein. Ziel der For­schungen ist der indirekte Nachweis des Gluonenkondensats, um so eine zentrale Frage der Teilchenphysik zu klären.

Originalveröffentlichung:
Y. Mehtar-Tani, G. Wolschin: Baryon Stopping as a New Probe of Geometric Scaling, PRL 102, 182301 (2009), DOI: 10.1103/PhysRevLett.102.182301
Kontakt:
Georg Wolschin
Institut für Theoretische Physik
Tel. 06221 549415
wolschin@uni-hd.de
Allgemeine Rückfragen von Journalisten bitte an:
Universität Heidelberg
Kommunikation und Marketing
Dr. Michael Schwarz, Pressesprecher
michael.schwarz@rektorat.uni-heidelberg.de
Irene Thewalt
presse@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise